说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 依范连续半群
1)  eventually continuous semigroup
依范连续半群
2)  norm continuous semigroup
范数连续半群
1.
in this paper we present a new charact Er Istic of norm continuous semigroups on a hilbert space and greatly simplify the Proof about the known characteristic.
给出 Hilbert空间中范数连续半群的一个新特征 ,同时极大地简化了已有结果的证
3)  eventually norm-continuous semigroup
最终范数连续半群
1.
We discuss the solution of an operator equation which describes the characterization of eventually norm-continuous semigroups on a Hilbert space.
讨论描述希尔伯特空间最终范数连续半群特征的一个算子方程的解,给出这个解的一个显式表达式。
2.
Some properties of eventually norm-continuous semigroups{T(t)|t≥0} in Banach space for t>t_0(t_0≥0) was studied,and a spectral distribution properies for infinitesimal generators of eventually norm-continuous semigroups was got.
主要讨论了B anach空间中当t>t0(t0≥0)时,最终范数连续半群{T(t)t≥0}的性质,给出了最终范数连续半群无穷小生成元的一个谱分布性质。
4)  eventually norm-continuous semigroups
最终范数连续半群
1.
A was obtained new perturbation theorem for eventually norm-continuous semigroups on a Hilbert space.
主要给出了一个在Hilbert空间中最终范数连续半群的扰动定理。
2.
This dissertation studies the perturbation of eventually norm-continuous semigroups.
本文对最终范数连续半群的扰动进行比较系统的总结和研究。
3.
A new perturbation result on the Hilbert space for the eventually norm-continuous semigroups is obtained,which makes the perturbation of the semigroups more abundant.
在算子半群扰动的基础上,对一类型半群即最终范数连续半群的扰动进行了研究,得到了Hilbert空间中最终范数连续半群的一个新的扰动结果,使得半群扰动的结果更加丰富。
5)  continuous semigroup
连续半群
6)  strongly continuous semigroup
强连续半群
1.
The purpose of this paper is to prove the existence of mild solutions for perturbed infinite delay differential equations in Banach space by using the phase-space method,the Hausdorff\'s measure of noncompactness,the strongly continuous semigroup and the Darbo fixed point theory.
利用相空间的方法,结合Hausdorff非紧性测度、强连续半群和Darbo不动点理论,研究相关半群在失去紧性的情况下,Banach空间中扰动型无穷时滞微分方程适度解的存在性,改进和推广了已有的一些结果。
补充资料:强连续半群


强连续半群
strongly-continuous son!-group

强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的0,x〔X的并的闭包. 为了J存在且等于I,其必要充分条件为}T(t)}}在(O,1)上有界一且X。二X.在这情形下半群T(t)可以用等式T(0)=I扩张月.对t)0强连续(它满足C。条件(c。一condition)).对更宽的半群类极限关系T(t),I在广义下满足二 腼土 ,一、沙t;(ees如可和性,c,条件(e,一eo碱tion)),或 *l竖小一’·:(·)X“·-X,X6X 吸,(Abel可和性,A条件(A一condition)).这里假设函数l}T(t)xl},x〔x,在[o,1」可积(且因而在任何有限区间上可积). 强连续半群当t一卜0时的性态可以完全非正则的.例如,函数t~}T(O川}二o可以有幂奇性. 对x在X。中的一个稠密集函数tl~T(t)x在[0,的)上可微.使得函数t卜T(t)x对所有x对t>0是可微的强连续半群起着重要的作用.在这情形下算子T‘(t)对每个t有界且t~O时它的性态为半群分类给出了新的机会.使得T(t)在包含半轴(0,的)的复平面的扇形内有一个全纯扩张的强连续半群的类已经被刻画出. 见算子的半群(s绷一gro叩of。伴份tor);半群的生成算子(罗neratlngo详rator ofas明一妙up).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条