1) strongly continuous semigroup(C0-semigroup)
强连续半群(C0-半群)
2) semigroup of strongly continuous operators(C 0-semigroup)
强连续算子半群(C0半群)
3) strongly continuous semigroup
强连续半群
1.
The purpose of this paper is to prove the existence of mild solutions for perturbed infinite delay differential equations in Banach space by using the phase-space method,the Hausdorff\'s measure of noncompactness,the strongly continuous semigroup and the Darbo fixed point theory.
利用相空间的方法,结合Hausdorff非紧性测度、强连续半群和Darbo不动点理论,研究相关半群在失去紧性的情况下,Banach空间中扰动型无穷时滞微分方程适度解的存在性,改进和推广了已有的一些结果。
4) strongly continuous semigroups
强连续半群
1.
Chapter 2 is preliminaries, mainly including some definitions and basic prop-erties on strongly continuous semigroups, integrated semigroups and pseudo al-most automorphic functions.
主要包括强连续半群、积分半群与拟概自守函数的定义与基本性质。
5) C_0-semigroup
C0-半群
1.
By means of the theory of C_0-semigroup and its nonlinear perturbation of bounded linear operators, we prove the existence and uniqueness and stability of solution for this SARS epidemic model.
讨论了一种带年龄结构的SARS疾病模型,它是一组非线性偏微分方程组,应用有界线性算子的C0-半群理论及非线性扰动理论,证明了该方程组非负解的存在唯一性及稳定性。
6) C0-semigroup
C0-半群
1.
In this paper,the author studies the sufficient conditions for the growth bound ω1 of C0-semigroup(S(t))t≥0,more than or less than the given constant ω,where(S(t))t≥0 is the perturbated semigroup by C0-semigroup(T(t))t≥0 under the bounded operator B.
文章研究Hilbert空间中具有增长ω0的C0-半群(T(t))t≥0,在有界算子B扰动后所成半群(S(t))t≥0的增长阶ω1大于或小于给定常数ω的充分条件。
2.
In this paper,the finite time and infinite time admissibilities of unbounded observation operators are introduced for linear systems in Banach spaces,the equivalences of the weak admissibilities and the general admissibility are proved under the condition that the C0-semigroup mapping S(t) is surjective.
给出观测算子的一种弱有限时、弱无限时容许性定义,讨论了在C0-半群满射条件下此类容许性与通常的容许性等价。
3.
By the positive c0-semigroup which is generated by system operator,we proved the existence and uniqueness of the non-negative weak solution of the system depended on time.
讨论由软件和硬件构成的串联可修复计算机系统,利用系统算子生成的Banach空间中的正压缩c0-半群的性质及泛函分析的方法,证明该系统具有唯一非负时间依赖弱解。
补充资料:强连续半群
强连续半群
strongly-continuous son!-group
强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条