1) Banach-Saks property for convergence in measure
依测度收敛的Banach-Saks性质
2) Banach-Saks property
Banach-Saks性质
1.
It is proved that averagely weakly locally uniformly convex Banach spaces have(WM) property;averagely uniformly convex Banach spaces have Banach-Saks property and the normal structure.
讨论平均凸性与Banach空间某些重要几何性质的关系,证明平均弱局部一致凸的Banach空间具有(WM)性质;平均一致凸的Banach空间具有Banach-Saks性质;平均一致凸的Banach空间具有正规结构,从而具有不动点性质。
3) opial property in meature
依测度收敛的Opial性质
4) Opial property in measure
依测度收敛的Opia1性质
6) unformly weak Banach-Saks property
一致弱Banach-Saks性质
补充资料:依测度收敛
依测度收敛
convergence in measure
依侧度收徽【。刃犯吧en理in meas城;。朋口.M0cT‘n。Me衅』 见收徽性的类型(conve卿n优,tyPesof).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条