1) strong convergence in measure
强依测度收敛
2) convergence in measure
依测度收敛
1.
The condition of multiplicating and dividing the convergence in measure of the measurable function sequence on infinite measurable set;
可测函数列在无限测度集上依测度收敛乘除成立的条件
2.
The definitions and properties of strong convergence,weak convergence and convergence in measure of integrable fanction space L~p are generalized in the paper.
文章对可积函数空间L~P中强收敛、弱收敛和依测度收敛几种收敛的定义和性质进行归纳和总结,讨论他们之间的关系,并给出了相应结果的证明,从而使各种收敛关系更加明晰和透彻。
3) convergence in fuzzy measure
依模糊测度收敛
1.
We introduce the concepts of the convergence in fuzzy measures and the almost everywhere convergence for the sequence of measurable fuzzy valued functions in the general fuzzy measure space in this paper.
在一般模糊测度空间上,针对可测模糊值函数序列给出了依模糊测度收敛和几乎处处收敛的概念,并在此基础上,进一步研究了模糊值函数序列的这两种收敛的蕴涵关系,从而获得了所谓模糊化的Riesz定理和Lebesgue定理。
2.
Then,for the sequence of the integrable fuzzy valued functions,the realationships between the C-I average convergence and the convergence in fuzzy measure,the C-I average basis and the basis in fuzzy measure are considered,respectively.
在一般模糊测度空间上,利用模糊值Choquet积分定义首次给出了模糊值函数列的C-I平均收敛、C-I平均基本等概念,并针对μ-可积模糊值函数列进一步研究了它的C-I平均收敛与依模糊测度收敛、C-I平均基本与依模糊测度基本之间的蕴涵关系。
4) slow convergence in measure
依测度弱收敛
5) convergent in measure
依测度收敛的
6) The convergent sequence coefficient in measure
依测度收敛序列系数
补充资料:依测度收敛
依测度收敛
convergence in measure
依侧度收徽【。刃犯吧en理in meas城;。朋口.M0cT‘n。Me衅』 见收徽性的类型(conve卿n优,tyPesof).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条