1) multiplicative semigroup
乘法半群
1.
By a system of linear equations on multiplicative semigroup,we present a general mathematical method to solve the inverse lattice problems in physics.
用乘法半群上的线性方程组来求解晶体原子间对势反演的逆问题。
2.
In this paper, it is proved that if n≥2 and R is an effective semiring or a semiring in which all idempotents are central elements, then Φ:Tn(R)→Tn(R) is a multiplicative semigroup automorphism if and only if there exist a invertible G∈Tn(R) and a semiring automorphism τ of R such that Φ(A)=G-1τ(A)G for all A=(aij)n×n inTn(R).
证明了当R是一个幂等元都是中心元的半环时,映射Φ:Tn(R)→Tn(R)是乘法半群自同构当且仅当存在Tn(R)中的可逆矩阵G和R中的半环自同构τ使得A=(aij)n×n∈Tn(R),均有Φ(A)=G-1τ(A)G。
2) bounded multiplicative semigroup
有界乘法半群
3) adjoint semigroup
圈乘半群
1.
It is proved that the adjoint semigroup of a π regular ring is a π regular semigroup.
证明 π正则环的圈乘半群是 π正则半群 。
2.
Rings with a completely regular generalized adjoint semigroup are characterized.
刻画具有完全正则的广义圈乘半群的环。
3.
This note deals with the regularity of the adjoint semigroup of a ring.
研究环圈乘半群的正则性。
4) Abelian(multiplicative)group
Abel(乘法)群
5) generalized adjoint semigroup
广义圈乘半群
1.
Rings with a completely regular generalized adjoint semigroup are characterized.
刻画具有完全正则的广义圈乘半群的环。
6) Multiplicative band semirings
乘法带半环
1.
Multiplicative band semirings whose additive reducts are semilattice are studied.
研究了加法半群为半格的乘法带半环,利用Green-D关系,得到了加法群为半格的乘法带半环的若干性质,证明了如果半环S的加法半群是半格,则S是乘法带半环当且仅当S是分配格,从而获得关于分配格的一个结构定理。
2.
In order to study the multiplicative band semirings which containing identity element,by studying distributive lattice,this paper obtaines some properties of multiplicative band semirings which containing identity element.
该文研究了一类幂等半环——含有幺元素的乘法带半环;从格与分配格的代数性质出发,得到了含幺乘法带半环的若干性质;证明了若S为含幺半环,则S是乘法带半环当且仅当S是分配格,从而获得了分配格的一个表示定理。
3.
,multiplicative band semirings which additive reducts are semilattice are studied in this paper.
研究了一类可表示为分配格的幂等半环,即加法半群为半格的乘法带半环;通过Green-D关系,得到了加法群为半格的乘法带半环的若干性质;证明了如果半环S的加法半群是半格,则S是乘法带半环当且仅当S是分配格;从而获得分配格结构的一种刻画。
补充资料:乘法半群
乘法半群
multiplicative semi - group
乘法半群【md均声Cative胭川~g川叩;My脸,11~皿即no理厂pynoal 结合环(assoc通石Ven吧)的乘法半群,即该环的所有元素矣宇乘法形成的半群(~一gro叩).非结合环关于乘法仅形成广群(grouPoid),称为环的乘法广群(multiPlicati说grouPoid). O.A.地aH图a撰郭元春译牛凤文校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条