2) finite element interpolation
有限元插值
1.
This paper presents an algorithmic approach to the construction of Finite element multiwavelets by the use of the idea of Finite element interpolation and multiresolution analysis(MRA).
利用有限元插值和多尺度分析理论构造出了有限元多尺度小波。
3) interpolated finite elements
插值有限元
1.
In this paper, the “interpolated finite elements” introduced in 1 are used to solve nonlinear hyperbolic problems of second order,the global convergence of H 1 norm is degree p+1.
用矩形网上的p次标准有限元解二阶线性双曲型问题的H1模的整体收敛阶是p,应用〔1〕中介绍的“插值有限元”得到非线性二阶双曲型问题的H1模的p+1次整体收敛,该方法仅增加少量的工
4) stochastic finite element-interpolation method
有限元插值方法
5) FE interpolation function
有限元插值模式
6) limit unit numerical value
有限元数值
1.
The application of limit unit numerical value analysis in landslide stability analysis;
有限元数值分析在滑坡稳定性分析中的运用
补充资料:Bessel插值公式
Bessel插值公式
Bessel interpolation formula
十户,业匕生二匕二上业业二且+ ’7’/“(2陀)! 十户划卫二业三卫上塑二止逛卫业二业且, ‘J’/之(Zn+l)!与Gauss公式(l),(2)相比,Bessel插值公式具有某些优点;特别是,如果在区间的中点,即在点t=1/2上插值,则一切奇数阶差分的系数都等于零.如果把公式(3)右边最后一项略去,则所得到的多项式凡,十1(x0十th)虽然不是一个适当的插值多项式(它仅在Zn个结点xo一伍一 l)h,…,x。十从上等于f(x》,但是给出了比同次插值多项式更好的余项估计(见播值公式(interpolatlon扔皿ula)).例如,如果x二x0十th6(x。,xl),则使用关于结点x0一h,x。,x。十h,x。+Zh写出的最常用的多项式 。;‘x‘、+,、、_一、:,,、。,,},一工{、尸,,,业止卫. 一扒‘。’‘”‘一”/2’了’/’UZ}’了’‘’几得到的余项估计,比关于结点x。一h,x。,x。,h或x。,x。+h,x。+2h写出的插值多项式给出的估计几乎要好8倍.Bessel插值公式{肠份哭1 intellx面位用肠nll山反二e”“ItI℃Pn创扭”“o“”即中叩M扒a} 作为Gauss前位]插值公式与同阶的(j:,us、后“,J括值公式(见‘;auss插值公式(Gauss Interp‘)xa[;、)11 folmtlla))之和的半而得到的公式,旋于结点卜,丫。}h.丫。h,I。·“h,丫川,.丫川,l)/7的Gaus、前向插值公式为:八一点工二戈+111卜 (,,十,帆叮h)州·川、、少不一(l) 刃+口(l、l)叮启) (2,:+1)’关f一结点丫。二戈汁h即关J结点玩,h一、、,、Zh一丫。卜h‘、从曰”!泊,、月h的同阶的Causs后向插值公式为‘·:、‘、r一、·,::、了{卜、业示过· ‘,今、、三性二i上二_上二_塑_业工__妇匕__“__土 /l/2飞,卜, “,‘一”(2) 设 (声扮石‘) 一厂冷二一下一一Bessel插值公式取下列形式([l},口1) BZ十:(一‘.“h)(3) 、一、/:{,一井片/少沪 ’/一{2}’一2’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条