说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有限元素水平插值法
1)  finite element horizontal interpolation method
有限元素水平插值法
1.
Aiming at insufficient meteorological data in town construction, recommends to obtain required meteorological data by analogue analysis method and finite element horizontal interpolation method referring to meteorological data of adjacent towns.
针对城镇化建设中小城镇气象资料不足或缺乏的情况 ,推荐参照邻近城镇已有资料 ,利用类比分析法和有限元素水平插值法
2)  stochastic finite element-interpolation method
有限元插值方法
3)  finite element interpolation
有限元插值
1.
This paper presents an algorithmic approach to the construction of Finite element multiwavelets by the use of the idea of Finite element interpolation and multiresolution analysis(MRA).
利用有限元插值和多尺度分析理论构造出了有限元多尺度小波。
4)  interpolated finite elements
插值有限元
1.
In this paper, the “interpolated finite elements” introduced in 1 are used to solve nonlinear hyperbolic problems of second order,the global convergence of H 1 norm is degree p+1.
用矩形网上的p次标准有限元解二阶线性双曲型问题的H1模的整体收敛阶是p,应用〔1〕中介绍的“插值有限元”得到非线性二阶双曲型问题的H1模的p+1次整体收敛,该方法仅增加少量的工
5)  interpolated coefficient finite element method
插值系数有限元
6)  FE interpolation function
有限元插值模式
补充资料:Бернштейи插值法


Бернштейи插值法
Bemshtein interpolation method

反p.un℃翻插值法fBemsh触in inte甲日侧门me价川;反 p幽Te肠“a““TepnoP妞颐“o皿碱npo”eeel 在区间!一1,}}七一致收敛于函数厂(劝的代数多 项式序列,f(x)农卜1,l]上是连续的.更确切地说, 反pHllll℃益H插值法指的是代数多项式序列 艺才犷’兀(‘, P。‘f.尤1.二一址卫一一一一一~一。_、。 一n、厂,了、,,—.八二}厂 1。气,笼矢一‘入I一文厂’少 其中 不(I)又eos(n arc eos义) 是q的~多项式(Cheb产he、pol扣om走a丈s夕, .、、一。。、}~鱼二垫.) }‘刀{是插值结点;而如果k尹21、,l是任意正整数,n之2匆十八g)l,0簇r<21,;二I,,,,q,则 河梦,二刀、梦’;否则 了}了一} 月开二艺f(x步八、)、:,)一艺f(x界、,}十:,) 了扮尹二{多项式凡仃;x)的次数与使得凡(f;x)等于f(x)的那些点的个数之比是(n一l)/伪一的,当。*刀时,它趋向于21/(2卜1);如果声足够大,则这个极限任意接近1.这种插值法是C.H一反llmrl℃nH于一1男】年提出的(l1)).【补注】这种插值法在西方似乎不很熟悉但是,有一种对于[(),1】上的有界函数采用特殊的插值结点k/城火=O,…,司的众所周知的Be此htein法卜这种方法是通过丘脚阻rd抽多项式(Bernshtein polynomia{s)给出的,对于[0,l]上的有界函数f(x)构造的Eep皿卫祀‘l多项式序列氏仃;劝在了称)的每个连续点x针0、1J上收敛于少试义).如果f(x)在【o,11仁是连续的,则这个序列在!0,1}一匕一致收敛(王八x)).如果八沐)是可微的,则仔贬八义)的每个连续点上)B二(f;劝,f’林),见[AI] 这种段阳山1℃兔I法常常用来证明(关于逼近的)Wei仍抚昭s定理(Weierstrass theorem).关于这种方法的推广(单调算子定理(monotoneoperator theorem))见【A21,第3章,第3节,也可参阅函数通近线性方法(approxitnation of functions,linear methods).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条