说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> p-群的秩
1)  rank of p group
p-群的秩
2)  rank of group
群的秩
3)  rank of homology group
同调群的秩
4)  Rank of Sylow subgroup
Sylow子群的秩
5)  rank of additive group
加法群的秩
6)  rank of algebraic group
代数群的秩
补充资料:代数群的秩


代数群的秩
rank of an algebraic group

代数群的秩【.nkof朋映尹朋允,议平;paHr幼碑6P明-叨c幼盆印ynn从1 代数群的一Ca比切子群(Carta们subgroup)的维数(这个维数与〔知铂n子群的选取无关).除了代数群G的秩外还考虑它的半单秩(s恻一s」mPle mllk)和约化秩(reductive rank),按定义它们分别等于代数群G/R的秩和代数群G/R。的秩,其中R为代数群G的根而R。为它的幂么根(见群的根(n兔diollofa grouP);幂么元(翻甲otente】eIT℃ni)).一个代数群的约化秩等于它的任一极大环面的维数(见极大环面(m妞面a】tonJS)).定义在域k上的线性代数群(lin-姗山罗bmicg力uP)G的约化k秩(阁uCti*k一mnk)(在G为约化群时(见约化群(耐uCti二grouP))称为它的k秩(k一mn玉))是它的一个极大k分裂环面的维数(这一维数与环面的选取无关;见分裂群(sPlitgrouP)).若k上的约化线性代数群G的k秩为零(等于G的秩),则G称为在k上是非迷向的(an-isotropic).(相应地,分裂的(sPlit))(亦见非迷向群(anisotroPic grouP)). 例.1)所有n阶非奇异上三角方阵组成的代数群不的秩等于它的约化秩,等于川兀的半单秩是零. 2)所有主对角线上全为1的上三角方阵组成的代数群U。的秩等于其维数袱n一l)/2,而其约化秩和半单秩均为零. 3)域k上的一个n维向量空间的恒定二次型(qUadnlticform)厂的所有天自同构组成的代数群O。(k,f)的秩等于【n/2」,而群O。(k,f)的k秩等于型f的Witt指数. 若基域的特征为0,则代数群G的秩等于其Ue代数的秩(花砍of a Lieal罗bra),都等于所有可能伴随算子Ad:g的特征值几=1的最小重数(对所有的g任G取极小值).若对一元素g〔G,这一重数正好等于代数群G的秩,则g称为正则的〔嗯幽r).G的所有正则元的集合在G上的2泊攻幻拓扑(2滋z乞kitopology)内是开集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条