1) density-dependent birth-death process
密度相依生灭过程
1.
This paper considers a density-dependent birth-death process X N on a countable state space .
本文主要考察可数状态密度相依生灭过程XN,且令∏ N 为 [0 ,∞ ]上XN/N的唯一平稳分布 ,通常这种分布弱收敛到一个退化分布 (N ∞ ) ;通过研究其大偏差得到这些概率的指数衰减
2) age dependent birth and death process
年龄相依生灭过程
3) similar birth and death process
相似生灭过程
1.
We introduce the concepts of similar birth and death process in random environments and discuss their propoties.
引入了随机环境中的相似生灭过程的概念,并讨论了它们的一些性质,在此基础上构造出了与给定的随机环境中的生灭过程X 相似的一族随机环境中的生灭过程:{X(x),x∈[0,b]}。
4) birth and death process
生灭过程
1.
Characteristic numbers and their probability meaning of two kinds of birth and death processes;
两类生灭过程的特征数及其概率意义
2.
We establish a linear birth and death process model of a population in polluted environment.
建立了生物种群在污染环境中的一个线性生灭过程模型。
3.
Then, by using birth and death process model, this paper compares the utilization ratio and service quality of two typical strategies, which is different in some details, in order to find the best CORBA service strategy for internet.
接着通过生灭过程分析了两种不同服务策略下CORBA服务器的资源的利用率与服务质量之间的关系,得出了在Internet上适合使用的服务模型。
5) birth-death process
生灭过程
1.
Firstly,the system state probability is estimated by Markov birth-death process,and then the request loss probability in stable system states is estimated by queuing theory,lastly, combining both of them,therefore the expression for the user perceived availability is established to quantitatively evaluate the sensitivity of user perceive.
首先使用Markov生灭过程估算系统状态概率,再利用排队论估算系统稳定状态下的请求丢失概率,最后结合二者建立起用户感知的可用性数学表达式,并以此来量化评估用户感知的可用性对各系统性能参数的敏感性。
2.
The amount model of SS(subscriber station),which needs ranging,is analyzed by using birth-death process under the condition of the given number of SS,and then the steady state solution of the amount is computed.
运用生灭过程分析了在确定SS数目的情况下需要Rang ing的SS数量模型,并计算出了需要Rang ing的SS数量的稳态解。
3.
It is proved by state transfer probability that the amount of bacterial metabolism at t moment is a birth-death process.
利用状态转移概率 ,证明了t时刻一个细菌群体的数量是一个生灭过程 ,并且给出一个时间段内细菌数量由i增长到j的概率 ,在不同的初始状态下 ,又讨论了细菌群体的平均大小 ,方差等 ,给出了一系列的结
补充资料:生灭过程
Birth-death process
一类非常重要且广泛存在的排队系统是生灭过程排队系统。生灭过程是一类特殊的随机过程。在排队论中,如果N(t)表示时刻t系统中的顾客数,则{N(t),t}=0}就构成了一个随机过程。如果用%26ldquo;生%26rdquo;表示顾客的到达,%26ldquo;灭%26rdquo;表示顾客的离去,则对许多排队过程来说,{N(t),t}=0}也是一类特殊的随机过程%26mdash;%26mdash;生灭过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条