1) non-homogeneous differential equation
非齐次微分方程
1.
In this paper,we investigate the growth of infinite order meromorphic solutions of second order non-homogeneous differential equations with meromorphic coefficients f ″+A(z)f ′+B(z)f=F.
研究了二阶亚纯函数系数的非齐次微分方程f″+A(z)f′+B(z)f=F无穷级亚纯解的增长性,对大多数亚纯解的超级得到了精确的估计。
2) neutral nonhomogeous differential equation
中立型非齐次微分方程
3) non homogeneous and linear differential equations
非齐次线性微分方程组
1.
A method to solve non homogeneous and linear differential equations by homogenization high precision direct integration (HHPD P) was proposed.
根据函数分段插值逼近的思想 ,在一个积分步长内用多项式近似表示方程的非齐次项 ,提出了一种原理简单、实施容易的求解非齐次线性微分方程组的新型齐次扩容精细积分法 ,该方法不涉及矩阵的求逆运算 ,不需要计算傅里叶级数展开系数的振荡函数积分 ,且在一个积分步长内只求解一个相应的齐次扩容微分方程组 ,因而本方法和已有的同类方法相比具有更高的计算精度和效率 ,数值算例表明了该方法的有效
4) linear non-homogeneous differential equation
线性非齐次微分方程
1.
In this paper,the authors investigate the growth of infinite order solutions of linear non-homogeneous differential equations f ″+Af ′+Bf=F,where,A,B are entire functions,F is an entire function of finite order.
研究了线性非齐次微分方程f″ +Af′+Bf=F的无穷级解的增长性 。
6) non-homogeneous linear differential equation
非齐次线性微分方程
1.
This paper introduces some methods for solving constant coefficient non-homogeneous linear differential equation by means of examples .
给出了常系数非齐次线性微分方程的几个解法,并举例说明了它们的应用。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条