说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 常负曲率
1)  negative curvity
常负曲率
1.
Based on the idea of integrable system,taking advantage of matrix model for 3-dimensional Minkowski space L 3,the integrability and curved suface deformation of negative curvity in L 3 were studied.
利用可积系统的思想 ,借助三维Minkowski空间L3的矩阵模型 ,我们研究了L3中常负曲率的类空曲面的形变及其可积性。
2)  nonnegative curvature
非负曲率
1.
It is well-known that there is a unique vertex on rotating parabolic surface in three-dimensional Euclidiean space,the paper generalizes the concept of vertex to a complete noncompact Riemannian manifold with nonnegative curvature.
将三维欧式空间旋转抛物面顶点的定义推广到一般的非负曲率完备非紧黎曼流形上,利用Perelman G证明Chee-ger-Gromoll核心猜想的几何方法,讨论了具非负曲率的完备非紧黎曼流形M上的核心S的结构,证明了如果由核心出发的法测地线均为射线,则或者S退化为一点,或者M=Rk×N,其中N是紧致的具非负曲率的黎曼流形。
2.
The paper gathers some results in Riemannian manifolds,including in complete geodesics without conjugate points,the geometric struture of a manifold with nonnegative curvature,the topology of a manifold with nonnegative Ricci curvature and some properties of Busemann function etc.
总结了完备黎曼流形上完备的无共轭点测地线所隐含的几何性质、完备非紧具非负曲率黎曼流形的几何结构、完备非紧具非负R icc i曲率黎曼流形的几何拓扑性质以及完备非紧黎曼流形上的Buse-m ann函数所隐含的几何拓扑性质,并提出了一些未解决的问题。
3.
The paper discusses the structure of the soul in a complete noncompact Riemannian manifold M with nonnegative curvature,and proves that if the soul of the manifold is unique,then the soul actually degenerates to a pole.
讨论了具非负曲率的完备非紧黎曼流形上的核心的结构,证明了如果核心是惟一的,那么核心将退化为极点。
3)  negative cruvature
负曲率
4)  Surface with negative Gauss Curvature
负曲率曲面
5)  surface of constant curvature
常曲率曲面
6)  quasi-constant curvature
拟常曲率
1.
Let Nn+p be an n+p-dimensional locally symmetric complete quasi-constant curvature Riemannian manifold and Mn be an n-dimensional compact sub-manifold in Mn+p with paralleled mean curvature vector.
设Nn+p是n+p维局部对称完备的拟常曲率黎曼流形。
2.
This paper presents a necessary and sufficient condition that the recurrent hypersurface M in a Riemannian space with quasi-constant curvature is locally symmetric,and shows that the complete irreducible birecurrent hypersurface M in a Riemannian space with quasi-constant curvature is recurrent if the generating element of N is a normal vector field or pungent vector field of M.
给出拟常曲率空问N中循环超曲面M局部对称的一个充要条件,并且证明若拟常曲率空间N的生成元是其完备不可约双循环超曲面M的法向量或切向量,则M是循环的。
3.
We generalize the two theorems of submanifolds in constant curvature manifolds to the external sphere mani-folds in quasi-constant curvature.
本文将常曲率流形的子流形的两个定理推广到拟常曲率外围流形的情形,得到了全脐的一个充分条件。
补充资料:常曲率黎曼空间
      截面曲率为常数的黎曼流形,它包括了欧氏空间、球面、双曲空间为其特例。在曲面论中,高斯曲率K为常数的曲面局部地为球面(K>0),平面(K=0)或双曲平面(K<0)。在高维时高斯曲率的自然推广为截面曲率(见黎曼几何学)。如果黎曼流形M上任何点处的任何二维切平面,其相应的截面曲率均为常数K,则称此黎曼流形为常曲率黎曼空间。又称常曲率空间。由著名的舒尔定理知道,如果dim M≥3并且M上每处的截面曲率的数值与二维切平面的选取无关,则截面曲率也必与点的选取无关,即它必为常曲率黎曼空间。局部地,常曲率K的n维黎曼流形的黎曼曲率张量可表为此处gij为黎曼流形的度量张量,1≤i,j,k,l≤n。在适当的坐标系下它的黎曼度量为局部地,它是n维球面(K>0)、欧氏空间(K=0)或双曲空间(K<0)。整体地说,单连通的完备常曲率空间只能是下列三种:球面、欧氏空间和双曲空间。如不单连通,则其通用覆盖流形必为上述三类之一。J.A.沃尔夫已完全解决了以球面为其通用覆盖的紧致的正常曲率空间的分类。
  
  人们对常曲率黎曼空间感兴趣的原因在于这类黎曼流形结构简单,具有最大的对称性(即容有最大参数的运动群),直观地说,这类空间是均匀各向同性的。它也同时作为共形平坦空间、爱因斯坦空间、齐性黎曼流形或对称黎曼空间等特殊黎曼流形的一类重要的例子。把它作为模型研究清楚以后,通过与这些标准的模型进行诸如曲率等几何量的比较,从而可得到对一般黎曼流形的一系列几何和拓扑的性质。
  
  

参考书目
   S.Kobayashi and K.Nomizu,Foundation of Differential Geometry, Vol. 1~2, John Wiley & Sons, New York,1963,1969.
   J.A.Wolf.Spaces of Constant Curvature, McGraw-Hill,New York, 1967.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条