1) buckling constant
曲率常数
2) constant scalar curvature
常数量曲率
1.
Space-like submanifolds with constant scalar curvature in a Pseudo-Riemanian space form;
伪黎曼空间型中具有常数量曲率类空子流形
2.
Gap phenomena for submanifolds with constant scalar curvature in a hyperbolic space
双曲空间中具有常数量曲率的子流形的间隙现象
3.
The paper discusses on the hypersurfaces in locally symmetric manifolds with constant scalar curvature and gets a pinching theorem which improves the known results.
研究局部对称空间中具有常数量曲率的紧致超曲面,给出这类超曲面的一个拼挤定理,改进了相关作者的结论。
3) maximum curvature constant
最大曲率常数
1.
One type of curve with continuous curvature derived in Cartesian frame,with the analysis of its curvature properties,the expression between maximum curvature constant restricted by gesture variation and maximum curvature of path curve was obtained,and the orientation parameter of the curve was gained consequently.
在笛卡尔坐标系中推导了一种连续曲率曲线,通过对其曲率特性进行分析,得到仅由姿态角改变量确定的最大曲率常数与路径曲线最大曲率之间的关系,从而求解出曲线方程中的转向位置参数。
4) surface of constant curvature
常曲率曲面
5) quasi-constant curvature
拟常曲率
1.
Let Nn+p be an n+p-dimensional locally symmetric complete quasi-constant curvature Riemannian manifold and Mn be an n-dimensional compact sub-manifold in Mn+p with paralleled mean curvature vector.
设Nn+p是n+p维局部对称完备的拟常曲率黎曼流形。
2.
This paper presents a necessary and sufficient condition that the recurrent hypersurface M in a Riemannian space with quasi-constant curvature is locally symmetric,and shows that the complete irreducible birecurrent hypersurface M in a Riemannian space with quasi-constant curvature is recurrent if the generating element of N is a normal vector field or pungent vector field of M.
给出拟常曲率空问N中循环超曲面M局部对称的一个充要条件,并且证明若拟常曲率空间N的生成元是其完备不可约双循环超曲面M的法向量或切向量,则M是循环的。
3.
We generalize the two theorems of submanifolds in constant curvature manifolds to the external sphere mani-folds in quasi-constant curvature.
本文将常曲率流形的子流形的两个定理推广到拟常曲率外围流形的情形,得到了全脐的一个充分条件。
6) constant curvature
常曲率
1.
The authors study the property of a class of(α,β)-metrics F in which β is parallel with respect to Riemann metric α and Riemann metric α is of constant curvature,and it is obtained that F is flat-parallel metric or conformally related to Riemann metric α.
研究一类β关于α是平行的并且Riemann度量α具有常曲率的(α,β)-度量F所具有的一些性质,证明了F要么是平坦平行度量,要么是与Riemann度量α共形相关的度量。
2.
In the present paper, the authors first study Finsler spaces satisfying L_ :0+K(x, y)F2C=0, show that it must be of constant curvature, and obtain some interesting conclusions.
证明了它一定具有常曲率,并得到一些有趣的相关结论,解决了下述著名定理的反问题:具有常曲率λ的芬斯勒空间一定满足L:0+λF2C=0。
3.
The purpose of this paper is to give some conditions which a Finsler space of constant curvature remains to be a Finsler space of constant curvature by a geodesic mapping of Finsler space.
常曲率Finsler、局部Minkowski空间的测地映射是Finsler几何的重要问题,本文首先获得了在 Finsler空间测地映射下,常曲率Finsler空间保持不变的充要条件并推导了局部 Minkowski空间经 Finsler空间的测地映射仍然是局部Minkowski空间的充要条件,此外还推导出在测地映射下,Berwald空间等保持不变的新的充要条件。
补充资料:曲率张量
曲率张量
curvature tensor
曲率张t【。口,.加理七.别万;Kp抓.3眼Te.3opl 流形M”上曲率形式(curvature form)关于局部共基分解得到的(1,3)型张量.特别地,关于和乐共基dx‘(i=l,…,。),线性联络的曲率张量的分量R之,用联络的Christofrel记号r急及其导数表达成 此二a,rt,一丙r务十r备巧一rFfl.具有结构Lie群G的主纤维空间上的任何联络的曲率张量是按类似的方式利用相应的曲率形式作分解来定义的;这个方法特别也适用于共形联络和射影联络.曲率张量取值于群G的Lie代数,它是所谓具有非标量分量的张量的一个例子. 作为参考.见曲率(前vature).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条