1) constant flag curvature
常旗曲率
2) flag curvature
旗曲率
1.
In particular, we show that there exists a A-deformation perserving projective flatness for a class of Randers metric with special flag curvature.
特别,对一类具有特殊旗曲率性质的Randers度量我们证明了这类度量一定存在保持射影平坦性的λ形变。
2.
Submanifolds flag curvature and Ricci curvature of submanifolds is studied by using normal curvature, Landsberg Curvature, normal tangent Curvature, Berwald connection, and second fundamenal form in Minkowski space.
利用Finsler法曲率A、Landsberg曲率Ly、法切曲率Fy、Berwald联络D以及第二基本形式Ⅱy,研究Minkowski空间中的子流形、子流形的旗曲率与李齐曲率。
3.
The convexity of distance function and geodesic sphere is studied by using tangent curvature and flag curvature in Finsler manifolds, and points out that the geodesic sphere is contained in the plane of Minkowski Space with complete and simply connected.
利用 Finsler流形中的切曲率和旗曲率 ,研究了距离函数与测地球的凸性 ;指出了在单连通完备 Minkowski空间中测地球正好是平面的一部
4) the horizontal flag curvature
水平旗曲率
5) surface of constant curvature
常曲率曲面
6) quasi-constant curvature
拟常曲率
1.
Let Nn+p be an n+p-dimensional locally symmetric complete quasi-constant curvature Riemannian manifold and Mn be an n-dimensional compact sub-manifold in Mn+p with paralleled mean curvature vector.
设Nn+p是n+p维局部对称完备的拟常曲率黎曼流形。
2.
This paper presents a necessary and sufficient condition that the recurrent hypersurface M in a Riemannian space with quasi-constant curvature is locally symmetric,and shows that the complete irreducible birecurrent hypersurface M in a Riemannian space with quasi-constant curvature is recurrent if the generating element of N is a normal vector field or pungent vector field of M.
给出拟常曲率空问N中循环超曲面M局部对称的一个充要条件,并且证明若拟常曲率空间N的生成元是其完备不可约双循环超曲面M的法向量或切向量,则M是循环的。
3.
We generalize the two theorems of submanifolds in constant curvature manifolds to the external sphere mani-folds in quasi-constant curvature.
本文将常曲率流形的子流形的两个定理推广到拟常曲率外围流形的情形,得到了全脐的一个充分条件。
补充资料:旗常
1.旗与常。旗画交龙﹐常画日月﹐是王侯的旗帜。语本《周礼.春官.司常》:"日月为常﹐交龙为旗……王建大常﹐诸侯建旗。" 2.借指王侯。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条