1) non-negative irreducible
非负不可约
1.
A class inverse spectiral problem for non-negative irreducible tridiagonal period matrices is proposed.
提出一类非负不可约周期三对角矩阵的逆谱问题 ,讨论了问题的可解性 ,并给出了问题有解的充要条件及算例 。
3) irreducible nonnegative matrix
不可约非负矩阵
1.
Discussion on eigenvalue problem of irreducible nonnegative matrix;
关于不可约非负矩阵的特征值问题探析
4) nonnegative irreducible square matrix
非负不可约方阵
5) nonnegative irredcible matrix
非负不可约阵
6) nonnegative reducible matrix
非负可约矩阵
补充资料:不可约簇
不可约簇
irreducible variety
不可约簇【jm汕叻以ev赴让勺;uenpHBO脚oe袖oroo6pa-3He} 在z助的目石拓扑(乙山ski topo10gy)下是一个不可约拓扑空间(沂司ucjble topo10gical space)的代数簇(algebmic峨币ety).换句话说,一个代数簇称为不可约的,如果它不能表示成两个真闭代数子簇的并.概形的不可约性可类似地定义,对于光滑(甚至正规)簇,不可约的概念与连通的概念是相同的.每个不可约簇有唯一的一般点(见一般位置点(pointin罗ne份1 posi-tion)). 与一个拓扑空间到不可约分支的分解相类似,任何一个代数簇是有限多个不可约闭子簇的并.这种表示法(可以用更精确的方式表达出来)的代数基础是交换NDe廿祀r环的准素分解(pnn飞lryd绷1llP戊ition). 在代数闭域上不可约簇的积亦是不可约的.对于任意基域,这不再正确.关于不可约簇的概念的另一种说法也是有用的:域k上的簇X称为几何不可约的(g印metricaUy ir代月ucible),如果对于k的任何域扩张k‘,通过换基(base cllange)从X得到的簇X⑧*灯仍为不可约.B.H.从a~oB撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条