说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Hardy-Littlewood极大函数mf
1)  Hardy-Littlewood maximal function mf
Hardy-Littlewood极大函数mf
2)  Hardy-Littlewood maximal function
Hardy-Littlewood极大函数
1.
In chapter 2, introducing the result on Hardy-Littlewood maximal function of (?)-measurable operators and property of convexΦ-function, then we generalize the conclusions in [1] by replaced p-norm withΦ-norm.
第二章介绍了(?)-可测算子的Hardy-Littlewood极大函数的有关引理和定理以及凸Φ函数的有关性质,然后把文献[1]中的几个结论中的p-范数推广成Φ-范数。
2.
We proveΦ-inequalities of Hardy-Littlewood maximal function of T-measurable operators in the sense of[1].
在[1]的意义下证明了τ-可测算子的Hardy-Littlewood极大函数的Φ-不等式。
3)  maximal function of Hardy-Littlewood
Hardy-Littlewood极大函数f*(x)
4)  Local Hardy Littlewood maximal function m R f
局部Hardy-Littlewood极大函数
5)  the hardy-littlewood maximal operator
Hardy-Littlewood最大函数
6)  Littlewood-Paley maximal function
Littlewood-Paley极大函数
补充资料:极大函数
      又称哈代-李特尔伍德极大函数,由已知函数经一定运算(取平均)后取极大值所定义的函数,是由英国数学家G.H.哈代、J.E.李特尔伍德于20世纪30年代研究傅里叶级数时引进的。极大函数算子M是指将函数?? 映为它的极大函数M??的算子。设??(x)是Rn中的局部可积函数,那么称下面的(M??)(x)为??的极大函数:,式中B(x,r)是以x为心、r为半径的球,|B(x,r)|是球的体积,表示对r取上确界。可证明,极大函数(M??)(x)是几乎处处取有限值的,只要;而且,式中A是常数,仅与p,n有关。
  
  从极大函数的定义可知,(M??)(x)≥|??(x)|几乎处处成立。另一方面,只??,那么仍有。这说明, 极大函数(M??)(x)虽比|??|本身要大,但又"不太大"。正是这个重要性质,使得极大函数(M??)(x)能有效地控制那些在lp上有界的算子,最后可以通过函数本身的大小达到估计算子的目的。
  
  极大函数的研究对分析数学的发展起了很大作用,近年来又有许多推广,并应用到数学的其他分支中去。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条