1) fractional Hardy-Littlewood average
分数次Hardy-Littlewood平均
1.
According to fractional Hardy inequality,the boundedness of commutators generated by fractional Hardy-Littlewood average operators and Lipschitz functions on R~+ is obtained.
对应于分数次Hardy不等式,考虑了由分数次Hardy-Littlewood平均算子与Lipschitz函数生成的交换子在R+上的有界性。
3) weighted Hardy-Littlewood average
加权Hardy-Littlewood平均
1.
In this note,the authors established a sufficient and necessary condition on the weight function for the boundedness of the weighted Hardy-Littlewood average operator on Herz-type space.
本文给出了加权Hardy-Littlewood平均在Herz型空间中关于权有界的充分必要条件。
4) weighted Hardy-Littlewood average operator
加权Hardy-Littlewood平均算子
1.
In this note, the authors obtain some necessary and sufficient conditions for the weighted Hardy-Littlewood average operator, Uψ, to be bounded on Herz spaces Kqα,p(Rn), and give some estimates for the corresponding operator norms.
本文给出了加权Hardy-Littlewood平均算子Uψ在Herz空间Kqα,p(Rn)中有界的充分必要条件并估计了相应的算子范数。
5) Hardy-Littlewood maximal function
Hardy-Littlewood极大函数
1.
In chapter 2, introducing the result on Hardy-Littlewood maximal function of (?)-measurable operators and property of convexΦ-function, then we generalize the conclusions in [1] by replaced p-norm withΦ-norm.
第二章介绍了(?)-可测算子的Hardy-Littlewood极大函数的有关引理和定理以及凸Φ函数的有关性质,然后把文献[1]中的几个结论中的p-范数推广成Φ-范数。
2.
We proveΦ-inequalities of Hardy-Littlewood maximal function of T-measurable operators in the sense of[1].
在[1]的意义下证明了τ-可测算子的Hardy-Littlewood极大函数的Φ-不等式。
6) Hardy-Littlewood maximal function mf
Hardy-Littlewood极大函数mf
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条