说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 预解算子族
1)  Resolvent operator family
预解算子族
1.
Let k∈C(R +), A be a closed linear densely defined operator in the Banach space X and {R(t)} t≥0 be an exponentially bounded k-regularized resolvent operator family generated by A.
设 k∈ C( R+ ) ,A是 Banach空间 X中的闭稠定线性算子 ,且 A生成一个指数有界的 k -正则预解算子族 R( t) 。
2)  C-regularized resolvent operator family
正则预解算子族
3)  k-regularized resolvent operator family
k-正则预解算子族
4)  C-Regularized resolvent families
C-正则预解算子族
1.
In this paper ,some basic properties of C-regularized resolvent families have been studiedincluding Additional Perturbations, Pseu- C1-resolvent , Convergence and Approximation of C-Regularized resolvent families.
本文主要研究了C-正则预解算子族的一些基本性质,包括C-正则预解算子族的加法扰动,伪C1预解式以及收敛与逼近等性质等。
5)  resolvent operator
预解算子
1.
Range structure for the resolvent operator of the generator of a generalized infinite particle system with zero range interactions;
广义零程粒子系统预解算子的值域结构
2.
A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解算子技巧,建立了一个迭代算法,导出收敛于上述变分包含问题的解的序列。
3.
This paper studies the locally bounded property of a generalized infinite particle system with zero range interactions and the dissipation of the resolvent operator of the system generator.
研究了广义零程粒子系统生成元的局部有界性和系统生成元预解算子的局部散逸性。
6)  resolvent positive operator
预解正算子
1.
In an ordered Banach space,a generation theorem,about increasing integrated semigroups of strong-contractions,is obtained in terms of resolvent positive operators and dissipative operators.
在序Banach空间中,用耗散算子和预解正算子刻画增加积分算子半群;给出了增加的强压缩积分算子半群的生成定理,发展了近期关于增加积分算子半群的相关结果。
补充资料:凹算子与凸算子


凹算子与凸算子
concave and convex operators

凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),00. 类似地,一个算子A称为今单(~ex)(更确切地,在K上“。凸的),如果条件l)与2)满足,但不等式(*)用反向不等号代替,并且函数粉(x,t)<0. 一个典型的例子是yP‘KOH积分算子 通rx‘t、1二f天(t.:,x(s))山, G它的凹性与凸性分别由纯量函数介(t,s,。)关于变量u的凹性与凸性所确定.一个算子的凹性意味着它仅仅包含“弱”的非线性—随着锥中的元素的范数增加,算子的值“慢慢地”增加.一般说来,一个算子的凸性意味着,它包含“强”的非线性.由于这个理由,包含凹算子的方程在许多方面不同于包含凸算子的方程;前者的性质类似于相应的纯量方程,而不同于后者,后者关于正解的唯一性定理是不成立的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条