1) Resolvent operator technique
预解算子技巧
1.
By using the resolvent operator technique for generalized m -accretive mapping due to Huang and Fang, we prove the existence theorem of the solution for this system of operator equations in Banach spaces.
利用Huang和Fang提出的广义m-增生映象的预解算子技巧,我们证明了Banach空间中此算子方程组的解的存在定理。
2.
Using resolvent operator technique associated with an (H, η)-monotone operator, the authors suggest a new iterative algorithm for approximating a solution to (NSVOI) and also discuss the convergence criteria of iterative sequences generated by the algorithm.
应用与( H,η)单调算子相关的预解算子技巧提出了一个迭代算法逼近其解,并且讨论了由此算法产生的迭代序列的收敛特征。
3.
A new class of nonlinear set-valued implicit variational-like inclusions involving(A,η)-monotone mappings in the framework of Hilbert spaces is introduced and then based on the generalized resolvent operator technique associated with(A,η)-monotonicity,the approximation solvability of solutions using an iterative algorithm is investigated.
文章在Hilbert空间中引入了一类新的涉及(A,η)单调映射的非线性集值隐似变分包含问题,基于与(A,η)单调性相关的广义预解算子技巧,用一种迭代算法研究了解的近似可解性,所得结果改进了许多近期结果。
2) resolvent operator technique
预解式算子技巧
1.
By using the resolvent operator technique,a new algorithm for approximating the solution of this class of variational inclusions was given,the convergence of the sequence of iterates generated by the algorithm was also discussed.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
2.
Using the resolvent operator technique,we obtain the approximate solution to a system of set-valued quasi-variational inclusions.
在Banach空间中引进一类H-增生算子,并给出了一类新的(H-η)-增生算子的概念,及相关的预解式算子RH,ηM,λ,利用新的预解式算子技巧得出一系列广义集值拟变分包含问题的逼近解。
3) Generalized resolvent operator technique
广义预解算子技巧
4) implicit resolvent equations
隐预解算子方程技巧
5) resolvent operator
预解算子
1.
Range structure for the resolvent operator of the generator of a generalized infinite particle system with zero range interactions;
广义零程粒子系统预解算子的值域结构
2.
A new iterative algorithms to approximate the solution of the class of nonlinear implicit quasi variational inclusions in Banach space is constructed using resolvent operator.
利用预解算子技巧,建立了一个迭代算法,导出收敛于上述变分包含问题的解的序列。
3.
This paper studies the locally bounded property of a generalized infinite particle system with zero range interactions and the dissipation of the resolvent operator of the system generator.
研究了广义零程粒子系统生成元的局部有界性和系统生成元预解算子的局部散逸性。
6) forecast skill
预报技巧
1.
It also initially discusses the characteristic and rule of the forecast skill change.
为了检验T213L31模式的性能与产品的质量,了解其在东亚地区的实际可预报性,本文用该模式2004年7-9月三个月的资料,计算了五个气象要素场各五个层次上的标准误差,从而对预报技巧变化的特征和规律作了初步探讨。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条