1) Generalized resolvent operator technique
广义预解算子技巧
2) resolvent operator technique
预解式算子技巧
1.
By using the resolvent operator technique,a new algorithm for approximating the solution of this class of variational inclusions was given,the convergence of the sequence of iterates generated by the algorithm was also discussed.
利用预解式算子技巧构造了一类求变分包含逼近解的迭代算法,并讨论了由此算法产生的迭代序列的收敛性。
2.
Using the resolvent operator technique,we obtain the approximate solution to a system of set-valued quasi-variational inclusions.
在Banach空间中引进一类H-增生算子,并给出了一类新的(H-η)-增生算子的概念,及相关的预解式算子RH,ηM,λ,利用新的预解式算子技巧得出一系列广义集值拟变分包含问题的逼近解。
3) Resolvent operator technique
预解算子技巧
1.
By using the resolvent operator technique for generalized m -accretive mapping due to Huang and Fang, we prove the existence theorem of the solution for this system of operator equations in Banach spaces.
利用Huang和Fang提出的广义m-增生映象的预解算子技巧,我们证明了Banach空间中此算子方程组的解的存在定理。
2.
Using resolvent operator technique associated with an (H, η)-monotone operator, the authors suggest a new iterative algorithm for approximating a solution to (NSVOI) and also discuss the convergence criteria of iterative sequences generated by the algorithm.
应用与( H,η)单调算子相关的预解算子技巧提出了一个迭代算法逼近其解,并且讨论了由此算法产生的迭代序列的收敛特征。
3.
A new class of nonlinear set-valued implicit variational-like inclusions involving(A,η)-monotone mappings in the framework of Hilbert spaces is introduced and then based on the generalized resolvent operator technique associated with(A,η)-monotonicity,the approximation solvability of solutions using an iterative algorithm is investigated.
文章在Hilbert空间中引入了一类新的涉及(A,η)单调映射的非线性集值隐似变分包含问题,基于与(A,η)单调性相关的广义预解算子技巧,用一种迭代算法研究了解的近似可解性,所得结果改进了许多近期结果。
5) implicit resolvent equations
隐预解算子方程技巧
6) generalized resolvent operator equation system
广义预解算子方程组
补充资料:广义位移算子
广义位移算子
eneralized displacement operators iSt generSarawak* 獴JS
【补注】也见【AZI.如果局部紧群G与紧子群K,(G,K)形成一个reJlb中娜对(Gel’几记pair),则其相应的广义位移算子是可换的.可换超群结构可对应一个依Ja伽俪多项式(Jacobi pol”10而als)的展开与对偶展开.关于产生广义位移算子的Stun旧一Liou认沮e算子类,见【AZ〕.定,则存在H上(唯一的)超群结构,使得广义卷积与M(H)(相应地,D(H),A(H))的乘法相同.代数M(H)(相应地,D(H),A(H))的连续表示可理解为相应的广义位移算子的连续(相应地,无穷次可微、全纯)表示(见[201). 具有对合的B以伯ch超群代数的对称表示理论类似于群的酉表示论.关于交换的与紧的广义位移算子表示的最完整的结果(参看141一【6])已经获得.在一定条件下,H上关于正测度爪可和函数空间Ll(H,间能赋予具有对合的E以nach超群代数的结构.这些条件之一是:测度m在广义位移之下不变(关于各种不同式样的确切定义,参看[4卜!6],f巧卜【l0j).在自然假设下,对于右或左广义位移之下不变的测度,唯一性(确定到一个纯量倍数)也已证明;也有对于这种测度的存在性的充分条件(像超群的紧性,可换性或离散性等条件,见【81,【16]一【18]).然而,关于一般形式的广义位移算子,不变测度的存在性问题仍然未解决(1982).与Ll(H,m)一起,有界变分测度的Ban朋h超群代数与超群C’代数起着重要作用. 欣功ach超群代数及其对称表示已在[4],[6],[8],「巧卜「19」中研究过.关于直线上某些广义位移算子的解析泛函代数已在「9]中进行了研究.对于一般类型的广义位移算子,拓扑超群代数及其表示曾在!20」中考虑过,其中谱分析与谱综合问题是作为超群代数的理想问题来处理的.在【121中,应用超群代数的技巧来解决B.n.Ma叨皿算子方法框架中有关数学物理的问题. 调和分析(恤nl旧n沁al创够is).下述模式揭示了交换广义位移算子的结构(见〔4],〔51).设m,与m:分别是H:与凡上给定的正测度,x(x,y)是定义在H;x从上的函数,.设广义Fo~变换(罗朋扭血目Fou〔哈r加nsfon刃以tion)由 ,(x)巨抑一了,(x)而万)‘,(x)给出,它是Hilbert空间乌(H1,、办与乌喊,mZ)之间的同构.又设反演公式 ,(x)一Jf(力x(x,,)‘2伽)成立.如果测度m:是离散的,则这个公式给出尹(x)依广义Fourler级数(脚e血血目Four屹rse口留)的展开式.如果对某个ee拭与所有y‘从,成立x(e,对=1,则H.还具有超群结构.在此情况下,广义位移算子由公式 ;‘,(x)一ff。)x(k,,)x(x,,)‘2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条