1) Lebesgue-Δintegral
Lebesgue-Δ可积
2) Lebesgue integrability
Lebesgue可积
1.
The relations between generalized Riemann absolutely Integrability and Lebesgue integrability of the unbounded functions on finite intervals and the functions on infinite intervals are discussed,and some sufficient and necessary conditions concerned are obtained.
研究了有限区间上无界函数及无限区间上函数的广义Riemann可积性、广义Riemann绝对可积性与Lebesgue可积性之间的关系 ,得到了一些充分必要条
3) Lebesgue integrable
Lebesgue可积
1.
In this paper,we study the G integral and obtain that a G integrable function is Lebesgue measurable,then a bounded G integrable function is Lebesgue integrable;also we prove that these integrals are equal.
本文通过对G积分的研究,得到了G可积函数一定Lebesgue可测,从而有界G可积函数一定Lebesgue可积;同时我们还证明了这两个积分值相等。
2.
In this paper, we give a brief poot of absotutely Henstock integ rable is Lebesgue integrable,next we use Lebesgue point to structure the gauge δ and proved that absolutely Henstock integrable is Mcshane integrable.
首先给出绝对Henstock可积一定Lebesgue可积的简短证明,然后利用Lebesgue点构选δ(x)函数证明绝对Henstock可积是Mcshane可积的。
4) Riemann-Lebesgue-Stieltjes integrable
Riemann-Lebesgue-Stieltjes可积
5) Lebesgue integral
Lebesgue积分
1.
Lebesgue integral and its usage in probability;
Lebesgue积分在概率中的应用
2.
The relation of Lebesgue integral and generalized integral;
Lebesgue积分与广义积分的关系
3.
The equivalent definitions of Lebesgue integral;
Lebesgue积分的等价定义
补充资料:积积
1.长久累积。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条