说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 梯形不等式
1)  trapegoid inequality
梯形不等式
1.
A new inequality of Ostrowski type for twice differentiable functions by upper and lower bounds of second derivative is given,which extends the classical midpoint inequality and trapegoid inequality.
研究了一类二次可微函数,利用二阶导数的上界和下界,给出了二次可微函数的O strow sk i型不等式,同时也推广了经典的中点不等式和梯形不等式
2)  perturbed trapezoid inequality
扰动梯形不等式
3)  inequality form
不等式形式
1.
A weak result,which is the inequality form of the differential mean theorem,is obtained by weakening the conditions of it.
通过弱化中值定理的条件,得到了一个减弱了的结果,即中值定理的不等式形式,它在许多方面有一般中值定理的功效,且用它来证明一些定理时,还减弱了部分条件。
4)  Subgradient inequality
次梯度不等式
5)  formal non-equivalence
形式不对等
6)  isosceles trapezoid
等腰梯形
1.
Method of camera self-calibration based on isosceles trapezoid;
一种基于等腰梯形的摄像机自标定方法
2.
In this paper,we take advantage of the method of David Calvis to proof that the inner radias of univalence of isosceles trapezoidwhose sides sequence is aaab and the minimun angle is kπ(where b=a+2acos kπ,0≤k≤1/3) to be 2k2.
利用David Calvis方法研究等腰梯形的单叶性内径,证明了边序列为aaab最小角为kπ(其中b=a+2acoskπ,0≤k≤1/3)的等腰梯形P的单叶性内径为2k2。
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条