说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Wielandt不等式的矩阵形式
1)  Wielandt inequalities
Wielandt不等式的矩阵形式
2)  Wielandt inequality
Wielandt不等式
1.
The Wielandt inequality is an improvement on the general Cauchy-Schwarz inequality,and its applications to statistics were studied.
Wielandt不等式是对著名的Cauchy-Schwarz不等式的一种改进,1999年,王松桂等人把Wielandt不等式推广到x和y为矩阵的情形,并给出了许多统计应用。
2.
The Wielandt inequality is an improvement on the general Cauchy-Schwarz inequality, and its applications to statistics were studied.
Wielandt不等式是对著名的Cauchy-Schwarz不等式的一种改进,该不等式被广泛应用于统计理论中线型模型的研究方面,因此研究更一般形式的Wielandt不等式有重要的意义。
3.
In this Paper, matrix versions of the Cauchy-Schwarz inequality and Wielandt inequality on real subpositive definite matrices are studied by using Schur complement method.
本文研究了实亚正定阵的Cauchy-Schwarz不等式和Wielandt不等式的矩阵形式
3)  Wielandt & Hoffman inequality
Wielandt&Hoffman不等式
1.
On generalization of the Wielandt & Hoffman inequality;
关于Wielandt&Hoffman不等式的推广
4)  linear matrix inequality
线形矩阵不等式
5)  LMI
线形矩阵不等式
1.
Secondly,the robust controller under the two gain perturbations are proved and given in terms of linear matrix inequalities(LMIs).
基于线形矩阵不等式,当控制器增益存在两种形式摄动时,给出了系统鲁棒控制器的设计方法。
6)  trace inequalities of matrix
矩阵迹的不等式
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条