说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 局部共形Kaehler流形
1)  locally conformal Kaehler manifold
局部共形Kaehler流形
1.
In this paper, we give some characteristics for Sasakian anti-holomorphic submanifolds of a locally conformal Kaehler manifold, and prove that, for a Sasakian anti-holomorphic submanifold M of locally conformal Kaehler manifold , if M is orthogonal to Lee vector field B_0, then M is D-umbilical.
给出了局部共形Kaehler流形的Sasakian反全纯子流形的一些几何刻画 。
2)  Kaehler submanifolds
Kaehler子流形
1.
This paper discusses complete Kaehler submanifolds of complex projective space P n+p(1) with constant holomorphic sectional curvature 1, it generalizes the corresponding result of compact Kaehler submanifolds of P n+p(1).
讨论了具有常全纯截面曲率 1的n +p维复空间形式Pn+p(1)中的完备Kaehler子流形 ,对Pn+p(1)中紧致Kaehler子流形的相应结果作了推广 。
2.
This dissertatian is mainly concernd with several problems of Kaehler submanifolds and totally real submanifolds in complex projective space.
本文分两章研究了复射影空间CP~(n+p)中Kaehler子流形和全实子流形的若干问题。
3)  Kaehler manifold
Kaehler流形
1.
In any H-projective recurrent Kaehler manifold HK , the curvature tensor can be ex-pressed by the vector of recurrent and its associated vector with respect to the complex structure tensorin the following wayor it can be given in terms of the recurrent vector and the Ricci tensor by the formIf the scalar curvature of HK manifold is different from zero,then the curvature tensor has the from o
本文研究H-射影循环Kaehler流形的性质,导出了该流形曲由张量的代数结构,从而深化了这类流形的已有结果。
2.
In this thesis,we study several problems of Kaehler submanifolds and totally real submanifolds in a locally symmetric Bochner-Kaehler manifold.
在本文中,我们研究了局部对称Bochner-Kaehler流形中Kaehler子流形和全实子流形的若干问题。
4)  Bochner-Kaehler manifold
Bochner-Kaehler流形
5)  almost Kaehler manifolds
近Kaehler流形
1.
The study concerning the integrability of almost Kaehler manifolds is stemed from a well-known conjecture referred firstly by S.
关于近Kaehler流形可积性问题的研究是从S。
6)  Kaehler Finsler manifold
Kaehler Finsler流形
1.
Based on the work of [12],[13], the author studies in this paper some geometric properties of complex Finsler hypersurface of a Kaehler Finsler manifold.
7):定理A设(M,F)为Kaehler Finsler流形,(M,F)为(M,F)的复Finsler超平面,则(M,F)的第二基本形式B(·,·)的系数B_(j;k)可表示为定理B设(M,F)为Kaehler Finsler流形, (M,F)为(M,F)的复Finsler超平面,且(M,F)不是全测地的,则的充分必要条件是定理C设(M,F)为Kaehler Finsler流形, (M,F)为(M,F)的复Finsler超平面,且(M,F)不是全测地的,D为(M,F)的复Rund联络,则M_j_i=0的充分必要条件是:D在(M,F)上的诱导复线性联络(?)与(M,F)的内蕴复Rund联络(?)相同。
补充资料:共形半径


共形半径
conformal radius

  共形半径【阴血ml目radius;州洲扣和M场jp叫.仔cl关于区域的 单连通区域共形映射的一个特征,其定义如盯:设D是:平面内的单连通区域,其边界点多J上一补,孔是D内一点.若:0尹哭,则存在唯一的函数w=了(:)在D内全纯,满足规范化条件斥。)二of’执))二1.并把D单叶映射成圆盘王w:1叫r}.在这种场合,称量;二;(的,D)为D关于无穷远点的共形半径.当的eD时,D关于无穷远点的共形半径等于D的边界C的超限直径(transfinite diame-ter),并且等于集C的容,(以Padty). 区域的共形半径的概念在复平面内任意区域情形的推广是区域D关于一点z。ED的内半径概念(在苏联以外的文献中,“内半径”一词最初用于单连通区域的情形).设D是z平面上一区域,z。是D内一点,且假定区域D以z。为极点的Green函数g(z,z。)存在.设,是区域D关于“。点的Robin掌攀(Robin con-stant),即 f llm「a(:.:n、+inl:一z。Jl对:n若co. 11】」】】1口I么,QO)一1111艺}l对艺n=00. U,阅量r一e,称为区域D关于z。点的申半俘(in‘eriorradius).若D是单连通区域且其边界至少含有两个点,则D关于20 eD的内半径就等于D关于孔点的共形半径.当区域增大时其内半径不减:即若区域D和D,分别具有Green函数g(z,z。)和g,(“,z。),z。‘D,DC=D,,则它们在z。点的内半径r和rl满足如下不等式 r簇r一任意区域D关于点z。〔D之内半径则定义为所有包含于D,含有z。,且Green函数存在之区域在z。的内半径的集合的最小上界.根据这一定义,若D没有广义的Green函数,则D在z。eD的内半径r等于的.【补注】在【A2』中,z平面内紧连通集E的共形半径定义为它的余集关于无穷远点的共形半径(如上文所定义).若E被包含于半径为r的圆盘内且其直径d)r,则 P(r《4P,此处p是它的共形半径(依IAZ」中的意义,见【A2」).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条