1) strictly convex functional
严格凸泛函
1.
Similarly,by using strictly convex functional to describe the relation of Ax-x to Ax and x ,a new fixed point theorem is obtained.
然后利用严格凸泛函刻划了Ax-x,Ax,x之间的关系,获得一个新的不动点定理。
2) strictly positive functional
严格正泛函
3) strictly convex function
严格凸函数
1.
Some new characterizations of explicitly convex and strictly convex functionsare presented.
提出了显凸函数和严格凸函数的若干新特征,这些新特征是用函数的图象、上图象及其相对内部、相对边界、极点的性质与它们之间的关系来表述的。
2.
Theorem Suppose that λ,μ∈(0,1),λ+μ=1,f: R~+R~+ is a increasing,differential,strictly convex function and X is a Banach space.
给出了Banach空间一致凸的一个新的充要条件:设λ,μ∈(0,1),λ+μ=1,f:R+R+是单调递增且可微的严格凸函数,X是Banach空间,则X是一致凸的当且仅当对任意ε>0,存在δ>0,使得当‖x‖≤1,‖x-y‖≥ε时,有f(‖λx+μy‖)<λf(‖x‖)+μf(‖y‖)-
3.
Using the theory of topological degree,Altman theorem is extended by replacing the square function with the strictly convex function.
首先利用拓扑度理论推广了非线性泛函分析中的Altman定理,将其条件中的平方函数放宽为严格凸函数。
4) Strict positive defined functional
严格正定泛函
5) a strictly cyclic functional
严格循环泛函
6) strictly quasiconvex functions
严格拟凸函数
1.
[1],Yang presented characterizations of quasiconvex functions,strictly quasiconvex functions,and strongly quasiconvex functions respectively under a certain set of conditions.
在文献[1]中,杨新民教授分别介绍了拟凸函数、严格拟凸函数和强拟凸函数的一些特性,以及它们在一定条件下的性质。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条