1)  automorphism gruop
自同态群
2)  self-synchronization
自同步
1.
The high frequency screen composition and working principle are introduced,through the establishment of self-synchronization shaker mathematical model for dynamic analysis,starting against QZK2445 high frequency screen their bearings,electrical power,steel spring of static and projectile index,vibration intensity of a series of key factors,such as checking,a reasonable choice of a series of data.
介绍了高频筛的组成及工作原理,通过建立自同步振动筛数学模型,进行动力学分析,针对QZK2445高频筛,对其轴承、电机功率、弹簧静刚度及抛射指数、振动强度等一系列关键因素进行验算,合理选择出一系列数据。
2.
Based on the command and control theory in the information age,the value and working mechanism of self-synchronization in improving the battle effectiveness of troops is discussed,and the self-synchronization realization methods and principles based on rule set are brought forward.
基于信息时代指挥控制理论,探讨自同步在提升兵力系统作战效能中的价值和工作机理,提出基于规则集的自同步的实现方法和原理。
3.
By numerical simulation,the effects of the exciters eccentric torque,motor power and resisting moment due to rotating friction on self-synchronization motion are discussed.
通过数值仿真计算,研究了激振器的偏心矩、电机功率、偏心转子回转摩擦阻矩等参数对自同步运动的影响。
3)  non-self-synchronization
非自同步
4)  synchrodrive
自同步
1.
Dynamic Analysis of ZK36525 Synchrodrive Linear Vibrating Screen;
ZK36525型自同步直线振动筛的动力学分析
5)  self-synchronous
自同步
1.
Design and Construction Analysis of self-synchronous riddle;
自同步直线振动筛的设计与结构分析
2.
Electromechanical-coupling mechanism of self-synchronous vibrating system with three-motor-driving;
三电机激振自同步振动系统的机电耦合机理
3.
Study on the electromechanical-coupling mechanism of self-synchronous vibrating system with two-motor-driving based on matlab;
基于Matlab的两电机激振自同步振动系统机电耦合机理研究
6)  automorphism
自同构
1.
Non-singular feedback function over F_2+vF_2 and its automorphism;
F_2+vF_2上非奇异反馈函数及其自同构函数
2.
The orders of the automorphism groups of some groups of order p~6;
若干p~6阶群的自同构群的阶(英文)
3.
Algebra Automorphisms of the Quanized Enveloping Algebra U_q(_sl_2) at Generic;
量子包络代数U_q(_sl_2)的代数自同构
参考词条
补充资料:自同态半群


自同态半群
automorphism semi-group

自同态半群【。日朋职神蜘1胭拍~gn月Ip;3职翻叩中翻佣uo二yrpynna] 某对象(赋以某种结构口的集合X)的自同态对于乘法(依次进行变换)运算组成的半群.对象X可以是向量空间、拓扑空间、代数系、图等等;通常把它看成是某范畴(cat咫驹ry)的对象,而通常该范畴中的态射(Ino印hism)是保持口中关系的映射(线性变换或连续变换,同态等).X的全部自同态(即到它的子对象的态射)的集合EndX是X的全部变换的半群几(见变换半群沁田旅几m以tion~~g毛叩”的子半群. 半群EndX可以包含结构a的大量的信息.例如设X和Y分别是除环F和H上的维数)2的向量空间,若它们的自同态(即,线性变换)的半群EndX和EndY同构,就推出X和Y(特别是F和H)同构.某些前序集和格,每个B以〕le环,某些别的代数系都被它们的自同态半群决定到同构.对某些模和变换半群这也是对的.X的类似的信息由EndX的某个真子半群倒,拓扑空间的同胚变换的半群)所负载. 用这种方法,对象X的一些类(例,拓扑空间)可以由它们的部分自同态的半群也即是作为X的子对象的态射的部分变换的半群所刻画.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。