说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 反自同构
1)  antiautomorphism
反自同构
2)  anti-automorphism
反自同构
1.
Moreover, we have obtained certain precise relations between the solutions and automorphisms or anti-automorphisms of Mn(k).
本文给出了域K上全矩阵代数M_n(k)中几类特殊矩阵方程组的解以及它们与代数M_n(K)的自同构或反自同构之间的密切关
2.
Let R be a prime ring of characteristic not two,T be an anti-automorphism but not an involutionof R.
设R是特征不等于2的素环,T为R的非对合(T ̄2≠1)反自同构,若R满足如下条件之一,则R为交换环:(i)x ̄2x ̄T-x ̄Tx ̄2∈Z(R),x∈R;(ii)x ̄2x ̄T-xx ̄Tx∈Z(R),x∈R。
3)  anti automorphism
反自同构
1.
The forms of automorphisms and anti automorphisms of reflexive algebra A are given.
给出了自反代数A的自同构和反自同构的具体形式。
4)  ring antiautomorphism
环反自同构
5)  Local antiautomorphism
局部反自同构
6)  involutorial anti automorphism
对合反自同构
1.
We introduce the conception of involutorial anti automorphism over distributive pseudolattices,define and get some properties of M-P inverse of matrix.
在分配伪格上引入对合反自同构和矩阵M-P逆的概念,得到矩阵M-P逆的若干性质。
补充资料:Frobenius自同构


Frobenius自同构
Frobenius automorphism

E旧映如.自同构〔Fro饭址璐a此加叼和即;中p川免“叮caa盯oMo,中。3MJ C司015群中的一个特殊形式的元素.它在类域论中起关键作用.设L是有限域K的代数扩张,则Fro-比苗璐自同构叭j;定义为甲别认a)二丫,其中a‘L,、二}月(K的元素个数).当L/K为有限扩张时,汽/K生成G司。is群C饱I(L/K).当L/K为无限扩张时,叭/K是G目(L/幻的拓扑生成元.若L〕EOK且IE:KJ<叭则汽厂:二叫众‘,. 设k为具有有限剩余类域工的局部域,K是k的非分歧扩张,则剩余类域扩张的助伙泊i、自同构牧,河以唯一地提升为自同构叭,‘C佃(K/k),,称为非分尽犷攀K/k单Fro恢而比自回汐·设}习一q,吸为K的整数环,p为叹的极大理想,则Fro灰川uS自同构伞叼*由下述条件唯一决定:对任一a‘叹有甄k(a)兰丫(modp).设K/k为局部域的任一Galo地扩张,任一自同构,任G司(K/k)若在K的最大非分歧子扩张上诱导出上述意义下的Froh泊i诏自同构,有时也称为K/k的Frobenius自同构. 设K/k为整体域的Ga】015扩张,p是k的素理想,平是K中在p之上的某一素理想.又设平在K中不分歧,蜘〔Gal(凡/气)是局部域非分歧扩张凡火的Fm-饮泪i璐自同构·如果将6司。is群Gal喝/气)与平在C透1(K/k)中的分解子群等同,则价可看作〔润(K/k)中的元素,这个元素称为对应素理想平的Fro沃浦出自同构.若K八为有限扩张,由取励Tape。密度定理(Che-加扭此v血砒ity小印n沈n)可知,对任一自同构。‘C恤l(K/k),存在无限个在K/k中不分歧的素理想瑕使。二,,.对任一A比l扩张,蜘仅依赖于p,这时价砰己为(p,K/k),称为素理想p的Artin符号(Anins卿比l).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条