1) operator weighted shift
算子权移位
1.
Let T be an injective operator weighted shift with the weight sequence {W_k}~∞_(k=1)B(C~n).
令T是以{Wk}∞k=1B(Cn)为权序列的内射算子权移位。
2.
The present paper deals with the condition for a backward operator weighted shift to be Cowen Douglas operator.
(1)则称S是以{Wk}∞k=1为权序列的前向单边算子权移位(简称算子权移位),记为S~{Wk}∞k=1,称n为S的重数。
3.
For an operator weighted shift S~{Wk}∞k=1,W1=W2=…=W=λ1λ00λ2,using the dense of the periodic points,we show that this operator is chaotic if and only if λ1>1 and λ2>1.
对于算子权移位S~{Wk}k∞=1,W1=W2=…=W=λ01λλ02,利用其周期点的稠密性,给出了其为混沌的充分必要条件为λ1>1且λ2>1,进而推广并给出S~{Wi}∞i=1,Wi=μiωi0νi,S~{Wj}∞j=1,W1=W2=…=W=B1 B2…Bl为混沌的充分必要条件,其中Bl为Jordan块,W为n秩Jordan矩阵。
2) operator weighted shifts
算子权移位
1.
The sufficient and necessary condition is given for any multiple operator weighted shifts on separable complex Hilbert spaces to be compact operators, then the relations between operator weighted shifts S~{W_k} and T~{|W_k|} are discussed, and finally C_(αβ) classification of contracted any multiple operator weighted shifts are described.
给出复可分Hilbert空间上任意重的算子权移位是紧算子的充要条件,重新证明了每个算子权移位酉等价于一个正算子权移位并讨论了算子权移位S~{Wk}与T~{|Wk|}的关系,给出了压缩的任意重算子权移位的Cαβ分类的充要条件。
3) weighted backward shift operator
加权后移位算子
4) Weighted shifts
加权移位算子
1.
The complete characterizations of the spectra and their various parts of hyponormal unilateral and bilateral weighted shifts are presented respectively in this paper.
在这篇文章里 ,我们给出了亚正常单侧与双侧加权移位算子的谱及其各部分的完全刻画 ,推广了已有文献中的相关结果。
5) Unilateral operator weighted shifts
单边算子权移位
6) unilateral operator weighted shift
单侧算子权移位
1.
If {A_k}_(k≥0) be a uniformly bounded sequence of Invertible operators on H, H_n=H,(?)=sum from n=0 to +∞(⊕H_n) the unilateral operator weighted shift S on (?) with the weightedsequence {A_k}_(k≥0) is defined as S(x_0,x_1,x_2,…)=(0, A_0x_0,A_1x_1,…), (x_n)_n∈(?), denoted.
若{A_k}_(k≥0)是H上一致有界的可逆算子序列,设H_n=H,(?)=sum from n=0 to +∞(⊕H_n),(?)上具有算子权序列{A_k}_(k≥0)的单侧算子权移位S定义为S(x_0,x_1,x_2,…)=(0,A_0x_0,A_1x_1,…),(x_n)_n∈(?),记为S~{A_k}_(k≥0)。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条