1) Unilateral weighted shifts
单侧加权移位算子
2) unilateral operator weighted shift
单侧算子权移位
1.
If {A_k}_(k≥0) be a uniformly bounded sequence of Invertible operators on H, H_n=H,(?)=sum from n=0 to +∞(⊕H_n) the unilateral operator weighted shift S on (?) with the weightedsequence {A_k}_(k≥0) is defined as S(x_0,x_1,x_2,…)=(0, A_0x_0,A_1x_1,…), (x_n)_n∈(?), denoted.
若{A_k}_(k≥0)是H上一致有界的可逆算子序列,设H_n=H,(?)=sum from n=0 to +∞(⊕H_n),(?)上具有算子权序列{A_k}_(k≥0)的单侧算子权移位S定义为S(x_0,x_1,x_2,…)=(0,A_0x_0,A_1x_1,…),(x_n)_n∈(?),记为S~{A_k}_(k≥0)。
3) Bilateral weighted shifts
双侧加权移位算子
4) unilateral weighted shift
单侧加权移位
1.
This paper discusses the commutativity of the commutant {T}′ of unilateral weighted shift T which has 0 weights,and the commutativity of {T}′/rad {T}′.
讨论了带0权的单侧加权移位算子T的交换子{T}′的交换性和{T}/′rad{T}′的交换性与算子的权数序列之间的关系。
5) the unilateral (weighted) backward shift
单边(加权)后移位算子
6) weighted backward shift operators
单边加权移位算子
1.
Considering the weighted backward shift operators with constant-weight and using a relative result on similarity,we gave a complete classification under the sense of topological conjugacy for this class of operators.
考虑权为常数的单边加权移位算子,利用相似性的一个结果,给出了这类算子的完全拓扑共轭分类。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条