1) Cauchy stress tensor
Cauchy应力张量
1.
It is proved that frame indifference of strain energy founctions W (F)of a hyperelastic materical implies symmetry of Cauchy stress tensor T,and that frame indifference of T implies symmetry of T.
证明了应变能函数的客观性意味着 Cauchy应力张量的对称性 ,以及 Cauchy应力张量的客观性将包含应变能函数的客观性 ,从而也导致 Cauchy应力张量的对称性。
2) Stress tensor
应力张量
1.
Firstly transforms Cartesian coordinates of stress tensor,which in Navier-Stokes equation,to spherical coordinate,then does vector transform of spherical coordinate to Navier-Stokes equation.
本文利用过渡矩阵,先把Navier-Stokes方程中的粘滞应力张量由笛卡儿坐标系变换到球坐标系,然后对Navier-Stokes方程进行球坐标列矢量变换。
2.
Comparing with these viscoelastic strain increment expressions,it is concluded that for linear viscoelastic model,if the viscoelastic deformation law under different stress states,such as stress tensor,deviation stress and bulk stress,are the same,their parameters yield as Ek/ηk=Gsk/ηsk=Kmk/ηmk.
对不同应力分量下的广义开尔文模型应力应变关系进行了研究,推导了在不同应力分量下的广义开尔文模型的粘性应变增量计算式;通过对这些粘性应变增量计算式的比较分析,得到结论:对于线性粘弹性模型,当应力张量引起粘性变形的规律与应力偏量和球应力分别引起粘性变形的规律相同时,它们的系数满足关系式Ek/ηk=Gsk/ηsk=Kmk/ηmk;否则,这个关系式不成立。
3.
Based on the theory of matrix, this paper focuses on the similarity of stress tensor in different coordinate systems and then an instance performed by Ansys and Matlab is given to validate this conclusion.
以矩阵论的相关理论为依据,论证在不同的坐标系下,应力张量满足相似变换的特性;并通过Ansys有限元分析软件与Matlab数值计算软件构建实验平台对此加以验证。
3) Cauchy stress principle
Cauchy应力原理
4) Kirchhoff stress tensor
Kirchhoff应力张量
1.
Based on definition of strain energy function,increment formula of stationary potential energy of finite displacement theory were derived in terms of Kirchhoff stress tensor and Green strain tensor.
基于有限位移理论应变能密度函数的定义,利用Kirchhoff应力张量和Green应变张量,推出了非线性分析中增量形式的势能驻值公式,并证明了由势能增量驻值原理得到的增量平衡方程形式与由虚位移原理所得的结果完全一致。
2.
Then the applicability of both Kirchhoff stress tensor and Lagrange strain tensor are studied to describe the stress and strain field of these structures.
文中探讨了正装结构非线性的分析特点,研究了其应变场与应力场的Kirchhoff应力张量与Lagrange应变张量的适用性,提出了正装结构非线性分析中应力场与应变场的累加规律,导出了拖动坐标法的虚功增量方程,以此对杆系结构非线性分析常用的CR法和UL列式进行了精度比较分析。
5) couple-stresses tensor
偶应力张量
6) electric stress tensor
电应力张量
1.
From the basic formula of coulomb force and ampere force,together with the concept of electric stress tensor, the mathematic formula of electric force and magnetic force is deduced in this article.
从库仑力和安培力的基本公式出发,引用电应力张量和磁应力张量的概念,导出计算电场力和磁场力的简单数学表示式。
补充资料:球应力张量
球应力张量
spherical stress tensor
q一uyingli zhangl旧ng球应力张量(spherieal stress tensor)白一点处三个正应力的平均应力所组成的应力张量。求应力张量表示式为: f口n 00、 T觉~KO氏0卜 L 00沙m少 1 11,式中am一令(Jl十口,+口:)~令(氏+a、+氏)~号,一“’一‘3一‘一‘一J‘3‘一‘一J一‘’3’球应力张量只引起变形物体的体积变化而不引起形次的变化。 (王占学)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条