1) Quasi-Bochner-Martinelli-type high order singular integral
拟Bochner-Martinelli型高阶奇异积分
1.
According to the idea of Hadamard principle value for high order singular integral and the idea of induction, the authors discuss the existence of Hadamard principle value, recursive formula, computation formula and differential formula on the sense of Hadamard principle value for Quasi-Bochner-Martinelli-type high order singular integral in real Clifford analysis.
该文借助于高阶奇异积分的Hadmard主值思想以及归纳法思想讨论了实Clifford分析中拟Bochner-Martinelli型高阶奇异积分Hadmard主值的存在性、递推公式、计算公式,以及在Hadamard主值意义下的微分公式。
2) Singular integral of Bochner-Martinelli type
Bochner-Martinelli型奇异积分
3) Bochner-Martinelli type integral
Bochner-Martinelli型积分
1.
Boundary properties of Bochner-Martinelli type integral;
Bochner-Martinelli型积分的边界性质
4) higher order singular integral
高阶奇异积分
1.
Then using integration by parts and stokes formula,the authors give the definition of Hadamard principal value of the higher order singular integral (t) whose singularities are of orders 2n.
首先定义Cn中闭光滑可定向流形上一个带有拓广的Bochner-Martinelli核的高阶Cauchy型积分(z),然后利用分部积分和Stokes公式,给出这个奇性为2n阶的高阶奇异积分(t)的Hadamard主值,接着通过球面坐标变换等方法证明了一些引理,由此获得了(z)在Hadamard主值意义下的Plemelj公式。
5) high order singular integrals
高阶奇异积分
1.
Abstract By using the Hadamard s idea for principal value of high order singular inte-grals, we study induction definition, existence of Hadamard principal value, recurrence formula,computational and differential method, Poincare-Bertrand permutation formula, and Holdercontinuity for six kind quasi Bochner-Martinelli type high order singular integrals in real Clif-ford analysis.
本文借助于Hadamard关于高阶奇异积分有限部分的思想,研究关于实 Clifford分析中六个类型(含一个奇点或二个奇点的)拟Bochner-Martinelli型高阶奇异积分的归纳定义、Hadamard主值的存在性、递推公式、计算公式、微分公式、Poincare-Bertrand置换公式以及拟B-M型高阶奇异积分的Holder连续性等问题。
2.
In the first part of this paper, by the think of Hadamard principal value andthe think of induction, in view of prove the six lemma, we consider induce define, existence ofHadamard principal value, recurrence formula, compute formula and twelve differefltial formulafor three kind high order singular integrals in real Clifford analysis.
本文第一部分借助于高阶奇异积分的Hadamard主值的思想以及归纳法的思想,在证明了6个引理的基础上讨论实Clifford分析中三类高阶奇异积分的归纳定义,Hadamard主值的存在性,递推公式,计算公式以及高阶奇异积分在Hadamard主值意义下的12个微分公式。
6) singular integral of high non-integral order
非整数阶高阶奇异积分
补充资料:delaVallée-Poussin奇异积分
delaVallée-Poussin奇异积分
e la Vallee- Poussin singular integral
山hV叨触一P仪.菌n奇异积分【deh、7al应~P侧目n血-多面了加雌阳】;Ba月月e一flyeeeoac“Hry月,PHM.““Ter-pa月」 形式为 。‘、::、一李,萝理牛i、(x十:)cosZ·冬己。 乙兀L小一1)::戈的积分(亦见de h Vall倪一P侧对n求和法(de h vall‘e-Po哪insumrrntionmethod)).对于在(一的,田)上连续的、以2二为周期的函数f林),序列气(f;x)一致收敛于f(x)(【1」).如果在点x上 (父,(!)比今}一,(·,,则当。~的时,玖(f;x)~f(x),下列等式成立(12」): 。。、:,、一、(x、一工竺工主)、。「生1. 刀Ln」[补注]符号(Zm)!!表示Zm(2m一2)二2(m项),(2脚一1)!!二(2m一z)(Zm一3)二弓(m项),因此, (2n)!!二2,”(n!), (知一l)!!(Zn)!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条