1) singular Hermitian positive semidefinite matrix
奇异Hermitian正半定矩阵
2) Positive semidefinite Hermitian matrix
半正定Hermitian矩阵
3) Hermitian positive definite matrix
Hermitian正定矩阵
1.
Furthermore, a new estimation of the lower bound of the determinant module on the Hadamard product of a Hermitian positive definite matrix and a quasi-generalized complex positive definite matrix is obtained by using the improvement and the properties of quasi-generalized complex positive definite matrices.
首先改进了关于Hermitian正定矩阵的Hadamard乘积的行列式的下界估计的经典的Oppenheim不等式的加强形式,然后应用这个结论和拟复广义正定矩阵的性质,得到了Hermitian正定矩阵和拟复广义正定阵的Hadamard乘积的行列式的模的新下界估计。
2.
Theorefore, we obtain the necessary and sufficient conditions under which the relative gain array of Hermitian positive definite matrix becomes identity matrix.
给出了Hermitian正定矩阵的Hadamard乘积的Fiedler矩阵不等式和Bapat-Kwong矩阵不等式的等式条件,作为所得结果的应用,得到了Hermitian正定矩阵的相对增益阵列是单位矩阵的充分必要条件。
4) Nonsingular complex positive semidefinite matrix
非奇异复半正定矩阵
5) positive definite matrices singular matrices
正定矩阵/奇异阵
6) positive semidefinite matrix
半正定矩阵
1.
We first discuss the connections between Euclidian distance matrix and positive semidefinite matrix under the condition that Ax 0=λx 0, λ≥0, x 0=en, A n×n is a positive semidefinite matrix.
本文从半正定矩阵An×n满足Ax0=λx0,λ≥0,x0=e/n这个条件出发,讨论了欧几里得距离矩阵与半正定矩阵的关系,给出了判别一个欧几里得距离矩阵的充要条
2.
This paper is concerned with the problem of real symmetric positive semidefinite matrix pencil under spectral restriction.
本文讨论谱约束下实对称半正定矩阵束的最佳逼近问题,指出一般算法。
3.
There exist great differences between positive semidefinite matrix and positive definite matrixin the inequality research.
半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用Moore Penrose逆来代替一般的逆。
补充资料:非奇异矩阵
非奇异矩阵
non-angular matrix:
非奇异矩阵工叨一由卿面r口.翻玩;Heoco6e皿四M帅料a],非退化矩阵(non吐粤冠盼te“坦tr议) 其行列式不等于零的方阵(闪业祀n.让议).对于一个域上的方阵A,非奇异性等价于下述条件之一:l)A是可逆的;2)A的诸行(列)是线性无关的;3)A可以通过初等行(列)变换化为单位矩阵. 0 .A.价aHoBa撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条