1) invariant groups
不变群
1.
Using symmetry group methods, this paper studied the invariant groups admitted by Gauss curvature equation on jet bundle.
用对称群的方法研究了在R~3的射丛上Gauss曲率方程所容许的不变群及群不变解,并得到相应的不变群及一些群不变解。
2.
In this paper, firstly, using invariant group theory we give the invariant groups of geometric equation k_t = k~2(k_(θθ) + k) and equation S_t = 1/(S_(θθ)+S) Then we give some invariant solutions of wave equation u_(tt)= u_(xx) under some scaling group.
本文主要由不变群理论,研究并给出了收缩曲线流中几何方程K_t=k~2(k_(θθ)+k)和S_t=1/(S_(θθ)+S)的容许不变群。
2) group-invariant solution
群不变解
1.
In this paper,the symmetries and Lie algebra of the Kdv-Burgers equation were discussed,and the symmetry reductions were applied to get some group-invariant solutions of the KdV-Burgers equation.
主要考虑KdV-Burgers方程的一些简单对称及其构成的李代数,并利用对称约化的方法将KdV-Burgers方程化为常微分方程,从而得到该方程的群不变解。
2.
The Symmetry and Group-invariant solutions are discussed for the following KdV equation with distributed delay ut=uxxx+6(f*u)ux,where f is a delay kernel function.
考虑如下具有分布时滞的KdV方程ut=uxxx+6(f*u)ux,其中f为时滞核函数,利用经典的李群理论得到了当时滞核函数f为弱一般核时,时滞KdV方程的三个简单对称及其相应的群不变解。
3.
This paper considers the symmetries and Lie algebra ot the Coupled KdVequations,and uses symmetry reductions to get some group-invariant solutions of the Couples KdV equations.
主要考虑KdV方程组的一些简单对称及其构成的李代数 ,并试图利用对称约化的方法得到此方程的群不变
3) group invariant solution
群不变解
1.
This paper considers the symmetries and Lie algebra of Collapse equation, uses symmetries to obtain one-parameter invariant groups, and utilizes symmetry reductions to give some group invariant solutions of the Collapse equation.
主要探讨 Collapse方程的对称及其李代数 ,通过对称确定该方程的单参数不变群 ,并利用对称约化给出 Collapse方程的一些群不变
4) group-invariant solutions
群不变解
1.
Invariant groups, infinitesimal generators of the corresponding invariant groups and some group-invariant solutions were found.
用对称群的方法研究了在R~3的射丛上Gauss曲率方程所容许的不变群及群不变解,并得到相应的不变群及一些群不变解。
5) invariant subgroup
不变子群
1.
This paper mainly researches the relationship among the solution coset of linear equations form the angle of the coset of invariant subgroup,in the course of which the base and the dimension of quotient space have been found out.
从不变子群的陪集的角度研究线性方程组的解陪集之间的关系,并找到了商空间的基与维数。
2.
The article studies the propertes of Fuzzy homomorphism in groups,the results are obtained that the image φ ′ λ(W) of a subgroup W is also a subgroup,and the image φ ′ λ(H) of a invariant subgroup H is also a invariant subgroup.
研究群的Fuzzy同态性质 ,获得了子群W的像 φ′λ(W )也是子群 ,不变子群H的像φ′λ(H)也是不变子群 ;构造了两个特殊不变子群L =△{ y∈G2 | x∈G1,φ(x ,y) =φ(x ,e2 ) } ,φ- 1(e2 ) =△{x∈G1|φ(x ,e2 ) =1 } ,获得不变子群的一个重要性质及Fuzzy同态基本定
6) normal subgroup
不变子群
1.
This paper introduces the relationship between equivalence relation and subgroup, and from this equivalence law between congruence and normal subgroup can be deduced, The aim of this paper is to get a deeper understanding of equivalence relation, congruence, subgroup, normal subgroup and quotient group.
介绍了等价关系与子群的关系,并由此推导出同余关系与不变子群的等价定理,从而进一步加深对等价关系、同余关系、子群、不变子群以及商群的理解。
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条