说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 李群不变性
1)  Lie Group Invariance
李群不变性
1.
This paper presents a standardized natural gradient ICA(Independent Component Analysis) algorithm through improving the natural gradient ICA algorithm based on Lie Group Invariance.
对基于李群不变性的自然梯度ICA算法进行了改进,提出了一种规范化自然梯度ICA算法。
2)  invariant lie subgroup
不变李子群
3)  Lie Group transformation
李群变换
1.
Based on the assumptions of semi logarithmic relationship between coefficient of permeability and void ratio as well as the relationship between effective stress and void ratio of soil, the method of Lie Group Transformation is applied to solve the non linear partial differential equation of large strain consolidation of homogeneous saturated clay in semi infinite domain.
基于有效应力与孔隙比以及渗透参数与孔隙比之间的关系的一些假定 ,采用李群变换求解考虑材料非线性和几何非线性的半无限均质土体大变形固结非线性偏微分方程 ,得到了一个不考虑自重固结的完全解析解。
4)  Lie transformation group
李变换群
1.
In the article we advance the concept of prolongation group of Lie transformation group in a visual and pithy way, and resolve the coefficient problem of prolongation operator.
本文提出积流形李变换群延拓群的概念,并应用纤维丛方法解决延拓群算子中的系数问题,进而讨论其在黎曼流形中的一个应用。
2.
It is discovered that based on the prolongation group concept of Lie transformation group in a visual and pithy way,the resolved coefficient problem of the prolongation operator is used as a lemma by the fiber bundle method.
人们发现可以依据李变换群的延拓群概念,将运用纤维丛方法已经解决的延拓群算子中的系数问题作为引理,着重分析并求出真空Einstein方程所容许的群是解决上述问题的关键。
5)  group-invariant solution
群不变解
1.
In this paper,the symmetries and Lie algebra of the Kdv-Burgers equation were discussed,and the symmetry reductions were applied to get some group-invariant solutions of the KdV-Burgers equation.
主要考虑KdV-Burgers方程的一些简单对称及其构成的李代数,并利用对称约化的方法将KdV-Burgers方程化为常微分方程,从而得到该方程的群不变解。
2.
The Symmetry and Group-invariant solutions are discussed for the following KdV equation with distributed delay ut=uxxx+6(f*u)ux,where f is a delay kernel function.
考虑如下具有分布时滞的KdV方程ut=uxxx+6(f*u)ux,其中f为时滞核函数,利用经典的李群理论得到了当时滞核函数f为弱一般核时,时滞KdV方程的三个简单对称及其相应的群不变解。
3.
This paper considers the symmetries and Lie algebra ot the Coupled KdVequations,and uses symmetry reductions to get some group-invariant solutions of the Couples KdV equations.
主要考虑KdV方程组的一些简单对称及其构成的李代数 ,并试图利用对称约化的方法得到此方程的群不变
6)  group invariant solution
群不变解
1.
This paper considers the symmetries and Lie algebra of Collapse equation, uses symmetries to obtain one-parameter invariant groups, and utilizes symmetry reductions to give some group invariant solutions of the Collapse equation.
主要探讨 Collapse方程的对称及其李代数 ,通过对称确定该方程的单参数不变群 ,并利用对称约化给出 Collapse方程的一些群不变
补充资料:过李群玉故居
【诗文】:
讦直上书难遇主,衔冤下世未成翁。
琴尊剑鹤谁将去,惟锁山斋一树风。



【注释】:



【出处】:
全唐诗:卷653-20
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条