说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 不变点群
1)  temporally invariant cluster
不变点群
1.
In this study,image data in Xiamen area were acquired on March 4,2001 and March 26,2003(Landsat 7),and the newly developed temporally invariant cluster(TIC) method was used to normalize the normalized difference vegetation index(NDVI) of multi-temporal imagery directly.
采用不变点群法(temporally invariant cluster,TIC),由两时相影像的NDVI点密度图确定两个TIC中心并建立辐射归化处理方程,对影像的NDVI进行相对辐射归化处理。
2)  group-invariant solution
群不变解
1.
In this paper,the symmetries and Lie algebra of the Kdv-Burgers equation were discussed,and the symmetry reductions were applied to get some group-invariant solutions of the KdV-Burgers equation.
主要考虑KdV-Burgers方程的一些简单对称及其构成的李代数,并利用对称约化的方法将KdV-Burgers方程化为常微分方程,从而得到该方程的群不变解。
2.
The Symmetry and Group-invariant solutions are discussed for the following KdV equation with distributed delay ut=uxxx+6(f*u)ux,where f is a delay kernel function.
考虑如下具有分布时滞的KdV方程ut=uxxx+6(f*u)ux,其中f为时滞核函数,利用经典的李群理论得到了当时滞核函数f为弱一般核时,时滞KdV方程的三个简单对称及其相应的群不变解。
3.
This paper considers the symmetries and Lie algebra ot the Coupled KdVequations,and uses symmetry reductions to get some group-invariant solutions of the Couples KdV equations.
主要考虑KdV方程组的一些简单对称及其构成的李代数 ,并试图利用对称约化的方法得到此方程的群不变
3)  group invariant solution
群不变解
1.
This paper considers the symmetries and Lie algebra of Collapse equation, uses symmetries to obtain one-parameter invariant groups, and utilizes symmetry reductions to give some group invariant solutions of the Collapse equation.
主要探讨 Collapse方程的对称及其李代数 ,通过对称确定该方程的单参数不变群 ,并利用对称约化给出 Collapse方程的一些群不变
4)  invariant groups
不变群
1.
Using symmetry group methods, this paper studied the invariant groups admitted by Gauss curvature equation on jet bundle.
用对称群的方法研究了在R~3的射丛上Gauss曲率方程所容许的不变群及群不变解,并得到相应的不变群及一些群不变解。
2.
In this paper, firstly, using invariant group theory we give the invariant groups of geometric equation k_t = k~2(k_(θθ) + k) and equation S_t = 1/(S_(θθ)+S) Then we give some invariant solutions of wave equation u_(tt)= u_(xx) under some scaling group.
本文主要由不变群理论,研究并给出了收缩曲线流中几何方程K_t=k~2(k_(θθ)+k)和S_t=1/(S_(θθ)+S)的容许不变群。
5)  group-invariant solutions
群不变解
1.
Invariant groups, infinitesimal generators of the corresponding invariant groups and some group-invariant solutions were found.
用对称群的方法研究了在R~3的射丛上Gauss曲率方程所容许的不变群及群不变解,并得到相应的不变群及一些群不变解。
6)  invariant subgroup
不变子群
1.
This paper mainly researches the relationship among the solution coset of linear equations form the angle of the coset of invariant subgroup,in the course of which the base and the dimension of quotient space have been found out.
从不变子群的陪集的角度研究线性方程组的解陪集之间的关系,并找到了商空间的基与维数。
2.
The article studies the propertes of Fuzzy homomorphism in groups,the results are obtained that the image φ ′ λ(W) of a subgroup W is also a subgroup,and the image φ ′ λ(H) of a invariant subgroup H is also a invariant subgroup.
研究群的Fuzzy同态性质 ,获得了子群W的像 φ′λ(W )也是子群 ,不变子群H的像φ′λ(H)也是不变子群 ;构造了两个特殊不变子群L =△{ y∈G2 | x∈G1,φ(x ,y) =φ(x ,e2 ) } ,φ- 1(e2 ) =△{x∈G1|φ(x ,e2 ) =1 } ,获得不变子群的一个重要性质及Fuzzy同态基本定
补充资料:可解群


可解群
solvable group

可解群[刻腼uegr阅p或soluble脚叩;p幻petu“Ma,rPynna」 具有其商群均为Abel群的有限次正规列的群〔妙uP).(见子群列(subgl’O up series).)它也具有有Abel商群的正规列(noml改1 series)(这样的列称为可解(s川嫩b1e)列).群的最短的可解列的长度称为导出一长度(derived length)或可解性度(deg{ee of solv-油ility).这些序列中最重要的是换位子列或导列(见群的换位子群(cOinnlutator sub『0叩)).术语“可解群”产生于与代数方程的根式可解性相联系的C习说s理论(吻1015 theory)中. 有限可解群具有素数阶商群的次正规列.这种群由Lagrallge定理的下述逆定理所刻画:对群阶n的任意分解。二n』·”2,其中。,,。2是互素的,必存在阶为nl的子群,且任意两个阶为n,的子群共扼.若有限群的阶仅可被两个素数除尽,它就是可解群.在可解群类中有限群是以有限生成的周期群为特色的. 可解群的特殊情形有幂零群(ni】poten、group),多循环群(Polycyclicgro叩)及亚A阅群(能ta-Abeliangro印).用A侧正规子群通过多循环商群的扩张而得的有限生成群形成了重要的子类.它们满足正规子群的极大条件(见链条件(chain condi石。们))目是剩余有限的(见剩余有限群(residually一腼tegroup)).每个连通的可解块群(Lie group)(以及每个可解矩阵群,它在Zariski拓扑(Zariski topology)下是连通的)有幂零的换位子群代数闭域上的每个可解矩阵群有一个有有限指数的子群,它共扼于三角形矩阵群的一个子群(见l」e一KJ南n定理(Lie一K01-chin tlrorem)). 长度不超过l的全部可解群的集合形成簇(见群簇(v盯iety叮gro叩s)).这样的簇的自由群称为自由可解群(free solvable grouPs).【补注1亦见E泊rnside问题(Burnside Prob」。n)1).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条