2) generalized Durrmeyer-Bézier operator
广义Durrmeyer-Bézier算子
1.
With the K-function and modulus of continuity as the tool,we discusses the degree of approximation and convergence of generalized Durrmeyer-Bézier operator Dn,α(f,x)(0<α<1,α≥1) in Orlicz spaces,and obtain corresponding approximation theorems.
引入K-泛函及连续模,讨论了广义Durrmeyer-Bézier算子Dn,α(f,x)(0<α<1,α≥1)在Orlicz空间中逼近价的估计以及收敛性问题,并得出相应的逼近定理。
3) Szász-Durrmeyer operators
Szász-Durrmeyer算子
1.
The weighted approximation by Szász-Durrmeyer operators in Orlicz spaces LM is discussed,and the Jackson-type estimate for the degree of approximation is obtained.
在Orlicz空间LM中讨论了Szász-Durrmeyer算子的加权逼近,得到了逼近阶的Jackson型估计。
4) Durrmeyer-Bernstein operators
Durrmeyer-Bernstein算子
5) Bernstein-Durrmeyer operators
Bernstein-Durrmeyer算子
1.
Equivalence characterization for derivatives of Bernstein-Durrmeyer operators;
Bernstein-Durrmeyer算子导数的等价刻划
2.
As an application, the relationship between the multivariate Bernstein-Durrmeyer operators defined on the simplex and the modulus is discussed as well.
作为应用,讨论定义在单纯形上多元Bernstein-Durrmeyer算子与多元加权光滑模之间的关系。
3.
Secondly, a modification of Bernstein-Durrmeyer operators are introduced and the related approximation properties are also studied.
本文首先研究了一类修正的Bernstein算子的点态逼近性质,其次对Bernstein-Durrmeyer算子进行了修正,并研究了它的逼近性质。
6) Baskakov-Durrmeyer operator
Baskakov-Durrmeyer算子
1.
Simultaneous approximation by Baskakov-Durrmeyer operator;
Baskakov-Durrmeyer算子同时逼近
2.
In this paper, by using the method of Bojanic,we gave an estimate on the rate of convergence of the Baskakov-Durrmeyer operator for the function of bounded variation on [0,∞) and proved that the estimate is essentially the best possible.
利用Bojanic方法来估计Baskakov-Durrmeyer算子对在[0,∞)有界变差函数的收敛速度,并且收敛速率是不可改进的。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条