1) Baskakov-Durrmeyer type operators
Baskakor-Durrmeyer型算子
2) Baskakov-Durrmeyer operators
Baskakov-Durrmeyer型算子
1.
The purpose of this paper is to derive the direct and converse results of simultaneous approximation of JacobiAlweighted Baskakov-Durrmeyer operators by means of the equlvalenTce of Ditzian-Totik modulus and modified K-functionals.
利用Ditzian-Totik光滑模并改变K泛函的等价性导出Baskakov-Durrmeyer型算子的带Jacobi权同时逼近的正逆结果。
3) Durrmeyer type interpolatory oprators
Durrmeyer型插值算子
4) mixed Durrmeyer type operator
混合型Durrmeyer算子
5) Szász-Durrmeyer operators
Szász-Durrmeyer算子
1.
The weighted approximation by Szász-Durrmeyer operators in Orlicz spaces LM is discussed,and the Jackson-type estimate for the degree of approximation is obtained.
在Orlicz空间LM中讨论了Szász-Durrmeyer算子的加权逼近,得到了逼近阶的Jackson型估计。
6) Durrmeyer-Bernstein operators
Durrmeyer-Bernstein算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条