1) Caputo's fractional derivative
Caputo型分数阶导数
2) Caputo fractional derivative
Caputo分数阶导数
1.
Stable numerical approximation for Caputo fractional derivatives;
Caputo分数阶导数的稳定数值逼近
3) Caputo fractional derivatives
Caputo分数阶微分
4) Caputo derivative
Caputo导数
5) fractional derivative model
分数阶导数
1.
In the present paper, the fractional derivative model in Riemann-Liouville form is adopted to describe the viscous property of the matrix.
本文采用Riemann Liouville形式的分数阶导数模型描述基体的粘性特性 ,通过渐进均匀化方法给出了预测纤维加强复合材料整体本构关系的解析表达式 ,给出应用于基体具有Makris粘弹性关系的具体形式。
6) fractional derivative
分数阶导数
1.
In the present paper a new concept of "fractional derivative" is adopted to describe the viscoelastic property of the plastic matrix.
对于弹性纤维增强的复合材料 ,当其基体的粘弹性行为用分数阶导数型本构关系描述时 ,给出了预测整体三维本构关系的解析表达式 。
2.
The viscoelasticities of various polymers have been fitted with viscoelastic fractional derivative models.
粘弹性分数阶导数模型已很好地用于拟合高分子材料的力学特性 ,但动力学时域响应分析要用到分支解析函数的反 L aplace变换 ,计算非常繁琐。
3.
This work is devoted to investigating exact solutions of generalized fractional diffusion equation in the boundary condition and the general initial condition with the Laplace transform method by introducing the concept of Riemann-Liouville fractional derivative,then change initial condition,study the first passage time distribution problem,and validate the exact solutions exist.
该文引入黎曼-刘维尔分数阶导数的概念,用拉普拉斯变换方法研究了一类典型的分数阶扩散方程。
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条