说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分数导数的阶
1)  the order of fractional derivative
分数导数的阶
2)  derivative order
导数的阶
3)  fractional derivative model
分数阶导数
1.
In the present paper, the fractional derivative model in Riemann-Liouville form is adopted to describe the viscous property of the matrix.
本文采用Riemann Liouville形式的分数阶导数模型描述基体的粘性特性 ,通过渐进均匀化方法给出了预测纤维加强复合材料整体本构关系的解析表达式 ,给出应用于基体具有Makris粘弹性关系的具体形式。
4)  fractional derivative
分数阶导数
1.
In the present paper a new concept of "fractional derivative" is adopted to describe the viscoelastic property of the plastic matrix.
对于弹性纤维增强的复合材料 ,当其基体的粘弹性行为用分数阶导数型本构关系描述时 ,给出了预测整体三维本构关系的解析表达式 。
2.
The viscoelasticities of various polymers have been fitted with viscoelastic fractional derivative models.
粘弹性分数阶导数模型已很好地用于拟合高分子材料的力学特性 ,但动力学时域响应分析要用到分支解析函数的反 L aplace变换 ,计算非常繁琐。
3.
This work is devoted to investigating exact solutions of generalized fractional diffusion equation in the boundary condition and the general initial condition with the Laplace transform method by introducing the concept of Riemann-Liouville fractional derivative,then change initial condition,study the first passage time distribution problem,and validate the exact solutions exist.
该文引入黎曼-刘维尔分数阶导数的概念,用拉普拉斯变换方法研究了一类典型的分数阶扩散方程。
5)  fractional order derivative
分数阶导数
1.
Analytical approach of waveform attribute based on fractional order derivative;
基于分数阶导数的波形属性分析方法
2.
Application of fractional order derivative in analyzing seismic singularity
分数阶导数在地震奇异性分析中的应用
3.
The aim of this paper is to give a simulation of creep and relaxation laws of concrete with aging by using standard-linear-like body with fractional order derivatives.
本文的目的是采用含分数阶导数的类标准线性体来模拟考虑老化的混凝土的蠕变和松弛规律。
6)  derivatives of fractional order
分数阶导数
1.
The derivatives of fractional order of this function are foundout in this paper.
范德瓦尔登给出了一个著名的处处没有导数的连续函数的例子,本文求出了这个函数的分数阶导数。
补充资料:分数阶积分与微分


分数阶积分与微分
og fractional integration and differentia-

分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊0: ;、一上一f一工鱼一一添 r回几恤一t)’-(对f给予适当的限制;见!IL那里还包含算子人关于乌的估计). 下列定义(H.研几yl,1917)对可积的具有2二周期并在周期上具零均值的函数是方便的.设 f(x,一{采0cn“‘”’一艺‘、“‘”’,则f的以:>0)阶叭几贝积分(W亡ylintegl司)用式 ,,eC才月x 了_IX】~Z—!乙l 气!n)-定义;并且斑吞>0)阶导数尸用方程 d” fp(x)“~子二天一,(x) v一了dx”护”一户v,定义,这里n是大于刀的最小整数(应注意天(x)与几f(x)重合). 这些定义在广义函数论的框架中有进一步的发展.对周期的广义函数 f一艺‘毕切·分数阶积分灯=人的运算可据式(2)对一切实值:实现(若仪为负的,人f与“阶偏导数一致)且有关于参数“的半群性质. 在n维空间X中分数阶积分运算的类似式为R免业位势(Riesz potential;或俘挚掣积分恤把脚!of poten-tjal tyPe)) 。,,、,_.。r((n一“、/2、rf(x、 八_I《Xl二兀一t‘今-二一二言~一二二一‘二.--~‘‘戈二‘~dt T’t以j乙)竺}X一艺r” ‘、,,X凡的逆运算称为“阶Riesz导数(Riesz derivati记).分数阶积分与微分l云.西加目如吻阳‘刃翻日由场,曰血-肠即;八p浦姗。HT即.脚.翻.比。月.中中epe。朋.碑旧曰皿e],亦称分数次积分与微分 积分与微分运算到分数阶情形的推广,设f为区间[a,bl上可积函数,并设I汀(x)为f在la,x]上的积分,而嵘f(x)为此_、f(x)在ta,xl上的积分.,=2,3,…,那么有 ,。子‘。=~二一亡‘一犷,r‘八月,。、Y、、门、 卫_1 IX,一—1 IX一f,I吸tl“不.“浇无受D,111 IL“)了其中r间‘恤一I)!为r函数(手mi刀以丘山ctlon).上式右边对每个戊>0都有意义.等式(l)定义了f以a为始点的:阶分数阶积分(n习ctionalin噢州)或RI曰m以nn-Liou喇沮e积分(R~一Liou祖le int叩户1).对于复值参数:,算子叮被B.R记n艾Ir田(l时7)研究过,算子I:是线性的且有半群性质: 程「瑙(x)]二I:+,f(x).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条