说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 三角函数型周期波解
1)  Triangle function periodic solution
三角函数型周期波解
2)  triangular function periodic solutions
三角函数周期解
3)  Cosine periodic wave solution
周期函数波解
4)  triangle function wave solution
三角函数波解
1.
Based on a trial function method,by using two direct algebraic methods composed of hyperbolic function and triangle function,the exact solitary wave solutions and triangle function wave solutions to the nonlinear difference differential mKdV equation and Hybrid-lattice system are constructed with the help of Mathematica for the symbolic computation system.
在试探函数法的基础上利用双曲函数和三角函数所组成的两种直接代数法,并借助符号计算系统Mathematica构造了非线性差分微分mKdV方程和Hybrid-lattice系统的精确孤波解和三角函数波解。
5)  periodic cosine wave solutions
余弦函数周期波解
1.
The correlative characteristics between the exact solitary wave solutions and the periodic cosine wave solutions,as the traveling wave velocity varies,are revealed.
利用假设待定法,求出了非线性波动方程的具有双曲正割函数分式形式且渐近值不为零的精确孤波解和余弦函数周期波解,并分别讨论了它们的有界性,揭示了行波波速改变对钟状孤波解与余弦函数周期波解波形变化的影响。
6)  triply periodic function
三周期函数
补充资料:反三角函数


反三角函数
inverse trigonometric finctions

  反三角函数tiIV颐祀州浮.团班红允五.改如圈;。6p盯H“erp“ro.oMe印。,eeoe中”K双皿。1,反圆函数(~百比以叮允口币。斑) 三角函数(州即no住日的cfu“无ons)的反函数.六个基本三角函数对应六个反三角函数.它们是所谓反正弦、反余弦、反正切、反余切、反正割、反余割,并且分别记为A兀sinx,Are心x,A几tanx,A代田恤们x,为csecx,AI℃。艾沈℃x.函数A兀sin义和A戊姗x对于}xl簇1有定义(在实数范围内);A兀tanx和Arecotanx对于一切实数x有定义;A代secx和A兀~x对于}xl)1有定义;最后两个函数很少使用.另外一些记号是sin一’x,哪一’x,等等. 因为三角函数是周期的,所以它们的反函数是多值的(仃以ny绷目班沮).这些函数的单值分支(主支(少加烦palb口Ln比曰)记为毗sinx,眼峨x,·…也就是说,眼sinx是AIC sinx的主支,满足条件一7r/2簇眠sinx簇7r/2.类似地,昵哪x,arc枷x和毗田加叮x分别满足条件O城眼心x蕊二,一二/2蕊眼tanx毛二/2,0<眠印加叮x<“. 下图表示y=A优sinx,y二Al℃联x,y=A戊tanx,y=A儿cotanx的图形;主支由粗线标明. 宁少多 袱准 函数A戊sinx,…很容易由眼sinx,…来表示,例如二 Al℃sinx=(一l)月眼sinx+二n, A戊姗x=士娜哪x+2兀n,Al℃扭nx=arc tanx+兀”, A兀cotanx二arc cotanx+7tn, n=O,士1,·…反三角函数之间存在关系: “sinx+‘”x一合,一,““, 7T一’一 娥tan戈+娥cotanX一才,一的<戈<+呱因此,眼邸x和眼colallx在以后的公式中并不出现. 反三角函数是无限次可微的,并且在其定义域的任何内点的邻域中能够展开为级数.导数、积分和级数展开为: ‘二s血二丫二一里一一、(二恤:),-一共,、 、一’甲1一xZ’“‘l十x‘’ J二sin x dx一、二sinx+护厂了+C, 丁二tanx“x一二tanx一合In(‘+xZ)+c, 。I内,、二2月+. ‘s谊‘一‘+熙岸稀带六谕.,’戈’<‘, arctan二一于工二业立二2。·:二:l<1. n一0乙n州卜1 复变量的反三角函数定义为相应实函数到复平面的解析延拓. 反三角函数可以通过对数函数(fo砰币山面c丘mc.tion)来表示二 二s谊:=一ih( 12+打下百), 二朗:=一ih(z+护弈万), i,l+12 arctanz二一一in一. 乙1一迢么 i,12一1 arC仪】砚nZ=一,二~m— 21艺+l 幻.B.C期op曲撰【补注】tan一’x和co灿一’x的另一种记号分别是tg一’x和ctg一’x.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条