说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 全纯向量丛
1)  holomorphic vector bundle
全纯向量丛
2)  holomorphic vector
全纯向量
1.
Meanwhile,the holomorphic vectors and holmorphic automorphism groups are calculated by means of Hartogs theorem and universal covering theory.
利用Hartogs定理和万有覆盖理论,计算出这类流形的自同构群和全纯向量场。
3)  holomorphic line bundles
全纯线丛
4)  holomorphic tangent vector
全纯切向量
5)  holomorphic vector field
全纯向量场
6)  vector bundle
向量丛
1.
The possible form of the total Stiefel-Whitney classes of vector bundles on RP(j)×CP(k) is determined in this paper.
本文利用Steenrod上同调运算及吴公式决定了RP(j)×CP(k)上的向量丛的全Stiefel-Whitney类的可能的形状。
2.
In the present paper, we obtain some remarks on holomorphic vector bundles on some non-algebraic compact complex surfaces with odd first Betti number.
本文得到一些有关一类第一Betti数为奇数的曲面上的全纯向量丛的结果,以及例外Hopf曲面上的集合IS2(X,0)的描述。
3.
By using some results on the existence of rank two special stable vector bundles over generic curves of genus 5, we give count-examples to show that both Maruyama s conjecture and Arrondo-Sols conjecture are false on generic curves of genus 5.
Feiberg证明的在 g=5的当 S(E)<2时的一般代数曲线上二维特殊稳定向量丛的存在定理作为反例,说明进一步的Maruyama猜想和Arrondo-Sols猜想在g=5的一般代数曲线上均不能成立。
补充资料:向量丛

数学上,向量丛是一个几何构造,对于拓扑空间(或流形,或代数簇)的每一点用互相兼容的方式附上一个向量空间,所用这些向量空间"粘起来"就构成了一个新的拓扑空间(或流形,或代数簇)。一个典型的例子是流形的切丛:对流形的每一点附上流形在该点的切空间。或者考虑一个平面上的光滑曲线,然后在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。

这个条目主要处理有限维纤维的实向量丛。复向量丛也在很多地方有用;他们可以视为有附加结构的实向量丛的特例。

向量丛是更一般的纤维丛的特例

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条