说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 动力学zeta函数
1)  dynamical zeta function
动力学zeta函数
2)  Zeta function
Zeta函数
1.
Zeta functions of digraphs were introduced by Mizuno and Sato(Linear Algebra Appl.
Mizuno和Sato定义了有向图的Zeta函数(见Linear Algebra Appl。
2.
In this paper, we study the special Witt extension tower of a function field and the computation of it s zeta function.
本篇文章主要研究了函数域上一类特殊的Witt扩张的Zeta函数计算问题。
3.
We consider the element discussion of Ihara-type zeta function and their generalization for finite,possibly irregular graphs.
我们给出两种定义;第一种较简单,对选定的闭路又规定了一个等价类,把诸如ay_1y_2y_3与y_1y_2y_3a这两条闭路看作一个等价类,即ay_1y_2y_3~y_1Y_2Y_3a,这时Zeta函数是一个有理函数;第二种定义是Ihara zeta函数的直接推广,Ihara zeta函数是它的特例,然后给出一些Zeta函数的具体实例。
3)  Riemann zeta-function
Riemann zeta-函数
1.
On the Smarandache function and the Riemann zeta-function;
关于Smarandache函数与Riemann zeta-函数
4)  Riemann zeta function
Riemann zeta函数
1.
The convergence domain of the Riemann zeta function;
Riemann zeta函数的收敛区域
5)  Riemann-zeta function
Riemann-zeta函数
1.
And two interesting asymptotic formulas were obtained by using the estimates of Riemann-zeta function with analytic methods.
利用Riemann-zeta函数的估计及其解析方法研究了m次剩余数的一些渐近性质,得到了两个有趣的渐近公式。
2.
Here the partial sums ζn(r) =∑j=1n/jr, r≥1, so the Riemann-Zeta function ζ(k) can be expanded as the series involving Stirling numbers of the first kind.
本文证明了1-u1u2…uk的n-1阶矩(n≥1)是以调和数的部分和ζn(r)=∑j=1n 1/jr,r≥1为变元的指数型完全Bell多项式,因此Riemann-Zeta函数ζ(k),k≥2能够被展开成第一类无符号Stirling数s(n,k)的级数,从而计算出与ζn(r)有关的全部6个五阶和式。
3.
By means of combination of classical analysis, hypergeometric series and formal power series method, this dissertation investigates the problems on combinatorial computations of closed formulae of Riemann-Zeta function, infinite series identities as well as Pascal matrices, etc.
本文在超几何级数的理论基础上,利用经典分析和形式幂级数的方法,研究Riemann-Zeta函数封闭性公式,无穷级数求和公式以及关于Pascal矩阵等组合计算问题。
6)  Nielsen zeta function
Nielsen zeta函数
补充资料:动力学系统函数寻优
      在一组约束条件下,寻找动力学系统的一组函数,使给定的指标达到最优值(极小或极大值)的方法,属于多次运行仿真。动力学系统函数寻优方法有三类:极大值原理法(见极大值原理)、动态规划法(见动态规划)和直接函数寻优法。前两种方法只能处理最优控制问题,即被寻优的函数是以时间为自变量的。
  
  直接函数寻优法是计算机仿真中常用的方法。它的基本思路是先将被寻优的函数表示成一些已知的基函数的代数和,从而将对函数的寻优转变成为对这些代数项的权系数寻优,即变成为参数寻优问题。以一个寻优函数u(x)为例,设u(x)能表示成:
  
  
  
  其中lj(x)是定义在[ɑ,b]上的已知标量基函数,αj是可调权系数(参数)。给出一组参数α1,α2,...,αm,便确定一个函数 u(x)。x可以是系统中的状态变量或时间变量。基函数lj(x)可以是阶梯形函数、折线形函数、多点插值函数等。当选定基函数后,函数u(x)的寻优问题便转变成一组参数(α12,...,αm)的寻优问题。如果在系统模型中加入实现上式的函数插值器,则函数的迭代寻优过程与参数寻优类同(见动力学系统参数寻优)。
  
  对于n个函数寻优的情形,有n个相应的上述表达式,也就有n×m个参数寻优。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条