1) π-group congruence
π-群同余
1.
We study the relation of a GV-inverse semigroup congruence on a GV-semigroup S=(Y;Sα)and the π-group congruence on Sα.
讨论了GV-半群S=(Y;Sα)上的GV-逆半群同余与Sα上的π-群同余的关系,并把讨论结果应用到完全正则半群上。
2) minimum π group congruence
最小π群同余
3) minimum π-group congruence
最小π-群同余
1.
Three equivalent forms of the minimum group congruence and the minimum π-group congruence on a right π-inverse semigroup are given.
研究右π-逆半群的同余,给出右π-逆半群的最小群同余的3种等价刻画,并刻画右π-逆半群的最小π-群同余。
4) π-congruence
π-同余
1.
This paper introduced the total number r(α) of reverse orders in a word α on ∑^,(with) this concept and elementary transformations of a word on ∑^,we give a method to obtain the normalized π-representation of a π-congruence class [α]_π and some results to a structure of a π-congruence class [α]_π,for any α∈∑^~*.
利用这一概念及^∑上字的初等变换,对任何α∈^∑*,给出了一个得到π-同余类[α]π的标准π-表示的方法及若干有关π-同余类[α]π的结构的结果。
5) group congruence
群同余
1.
Some congruences,including a group congruence of completely Archimedean semigroup S,S=(G,n)are discussed.
利用同构映射构造出一类完全Archimedean半群,并且讨论了它的同余形式及群同余。
2.
We study the relation of a GV-inverse semigroup congruence on a GV-semigroup S=(Y;Sα)and the π-group congruence on Sα.
讨论了GV-半群S=(Y;Sα)上的GV-逆半群同余与Sα上的π-群同余的关系,并把讨论结果应用到完全正则半群上。
3.
We mainly get the result that there is a bijection between the set of all group congruence and the set of congruence subsemigroup on the nil-extension of completely simple semigroup.
论述了完全单半群的nil-扩张上的群同余与同余子半群之间的一一对应关系,即每个同余子半群可诱导出一个群同余,而每个群同余的核是一个同余子半群。
6) congruence subgroup
同余子群
1.
Subgroups with finite index of a Hecke group, which are called congruence subgroup, are often used in researching Dirichlet series, so it is necessary to investigate their structure.
Hecke群的有限指数的子群(称这些子群为Hecke群的同余子群)同样在研究Dirichlet级数发挥了重要作用,调查这些子群的结构是非常必要的。
补充资料:同余子群
同余子群
congruence subgroup
同余子群【“.9几e.ce su鲍朋p;切.下”皿一n叭印ylllla] 环R上一般线性群GL(n,R)的具有下列性质的子群H:存在R的非零双边理想平使得H曰GL(n,R,平),其中 G以n,R,平)=Ker(GL(n,R)*G以n,R/平)),即H包含G以n,R)中与单位矩阵模甲同余的全部矩阵.更一般地,R上次数为n的线性群r的子群H称为同余子群,如果 H〕rnG玖n,R,平)对某非零双边理想甲三尺成立. 如果 H=r门G以n,R,平),则H称为对应于平的主同余子群(PrindPal con-gruence subgrouP).同余子群的概念首先产生于R二Z的情形.对于Dedekind环R,从应用的角度看,特别有效和重要的情形是r=G门GL(n,R),其中G是R的分式域上的代数群.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条