1) stochastic generalized Kdv-MKdv equation
随机广义Kdv-MKdv方程
1.
By means of Hermite transformation,the Wick-type stochastic generalized Kdv-MKdv equation was reduced to stochastic coefficient equation,then some stochastic exact solutions were obtainable via the truncation expansion method and Hermite inverse transformation.
通过埃尔米特变换将W ick类型的随机广义Kdv-MKdv方程变成广义系数Kdv-MKdv方程,利用截断展开法求出广义系数Kdv-MKdv方程的精确解,并通过埃尔米特逆变换得到了随机广义Kdv-MKdv方程的精确解。
2) Wick-typed elliptical stochastic general KdV-MKdV equations
Wick类型的随机广义KdV-MKdV方程
3) generalized KdV-mKdV equation
广义KdV-mKdV方程
1.
In order to keep long-time numerical behavior satisfactory,we consider the multi-symplectic formulations of the generalized KdV-mKdV equation with initial value condition in the Hamilton space.
基于Hamilton空间体系的多辛理论研究了广义KdV-mKdV方程。
2.
Using direct integration method generalized KDV-MKDV equation was converted the equation into a first-order nonlinear ordinary differential equation,then some new exact solutions were got using undetermined coefficient method,the exact solutiobns were also got using the method that,the assumption transformation was firstly done,then trial function was selected.
利用直接积分方法将广义KDV-MKDV方程化为一阶变系数非线性常微分方程组,然后用待定系数法确定相应的常数获得了广义KDV-MKDV方程新的精确解;利用先作假设变换后选取试探函数的方法来直接构造广义KDV-MKDV方程新的精确解。
4) KdV-mKdV equation
KdV-mKdV方程
1.
we apply this method to the KdV-mKdV equation, the double sine-Gordon equation and the BBM equation, and some new Jacobian elliptic function solutions of them are derived, The method can be applied to other nonlinear evolution equations in mathematical physics.
利用该方法研究了KdV-mKdV方程,双sine-Gordon方程和BBM方程,获得了这些方程的新Jacobi椭圆函数解。
5) generalized mKdV equation
广义mKdV方程
6) KdV-MKdV-Burgers equation
KdV-MKdV-Burgers方程
补充资料:Kdv方程
Image:11776596881617173.jpg
kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。
kdv方程的解为簇集的孤立子(又称孤子,孤波)。
kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。
kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。