1) Generalized MKdV equations
广义MKdV方程组
2) generalized mKdV equation
广义mKdV方程
3) generalized KdV-mKdV equation
广义KdV-mKdV方程
1.
In order to keep long-time numerical behavior satisfactory,we consider the multi-symplectic formulations of the generalized KdV-mKdV equation with initial value condition in the Hamilton space.
基于Hamilton空间体系的多辛理论研究了广义KdV-mKdV方程。
2.
Using direct integration method generalized KDV-MKDV equation was converted the equation into a first-order nonlinear ordinary differential equation,then some new exact solutions were got using undetermined coefficient method,the exact solutiobns were also got using the method that,the assumption transformation was firstly done,then trial function was selected.
利用直接积分方法将广义KDV-MKDV方程化为一阶变系数非线性常微分方程组,然后用待定系数法确定相应的常数获得了广义KDV-MKDV方程新的精确解;利用先作假设变换后选取试探函数的方法来直接构造广义KDV-MKDV方程新的精确解。
4) MKDV equations
MKDV方程组
5) stochastic generalized Kdv-MKdv equation
随机广义Kdv-MKdv方程
1.
By means of Hermite transformation,the Wick-type stochastic generalized Kdv-MKdv equation was reduced to stochastic coefficient equation,then some stochastic exact solutions were obtainable via the truncation expansion method and Hermite inverse transformation.
通过埃尔米特变换将W ick类型的随机广义Kdv-MKdv方程变成广义系数Kdv-MKdv方程,利用截断展开法求出广义系数Kdv-MKdv方程的精确解,并通过埃尔米特逆变换得到了随机广义Kdv-MKdv方程的精确解。
6) Wick-typed elliptical stochastic general KdV-MKdV equations
Wick类型的随机广义KdV-MKdV方程
补充资料:拟线性双曲型方程和方程组
拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems
尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条