1) vertex operator
顶点算子
1.
Realization of Vertex Operators of 7-Twisted Affine Lie Algebra (?) [θ];
7-Twisted仿射李代数(?)[θ]的顶点算子实现
2.
Vertex Operator Representations of 3-twisted Affine Lie Algebra (?)[θ] and Modules for Vertex Algebra;
3-twisted仿射李代数(?)[θ]的顶点算子表示和顶点代数模
3.
Frankel and Kac[1,9,10]and Segal[11] had constructed the level-one representationsof a?ne Kac-Moody algebras A(n1),D_n~((1)),E_6~((1)),E7_~((1)),E8_~((1))by means of vertex operators in1981.
1981年,Frenkel,Kac[1,9,10]和Segal[11]用顶点算子构造出了仿Kac-Moody代数A_n~((1)),D_n~((1)),E_6((1)),E_7((1)),E_8((1))的第一类表示。
2) vertex operator representation
顶点算子表示
1.
A representation space is constructed by the root lattice of complex semisimple Lie algebras,on which a new kind of vertex operators is defined,and then the vertex operator representation is given for all of the affine Lie algebra of first kind.
利用复半单李代数的根格构造出表示空间,并在上面定义一类新的顶点算子,然后利用它们给出所有第一类仿射李代数的顶点算子表示。
3) Vertex operator algebra
顶点算子代数
1.
This paper studies the vertex operator structure of representation VQ of untwisted affine algebra associated with ■ hy the representation theory of Lie algebr, furthermore, it proves that VQ is a vertex operator algebra according to caclulus methods of formal sevies.
根据李代数的表示理论,研究了仿射李代数■的顶点算子表示VQ的顶点算子结构,通过形式级数的计算方法,证明了VQ是一个顶点算子代数。
5) Module of vertex operator algebra
顶点(算子)代数模
6) vertex algorithm
顶点算法
1.
Research on the Vertex Algorithm Solving Cutting Stock Problem of Patterns with Curving Sides;
优化排样中顶点算法在圆弧轮廓上的完善
2.
Improved vertex algorithm applied in optimal layout of patterns with curving sides;
适用于曲线轮廓工件排样的顶点算法
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条