1) vertex subgraph
顶点子图
2) Vertex induced subgraphs
顶点导出子图
3) vertex operator
顶点算子
1.
Realization of Vertex Operators of 7-Twisted Affine Lie Algebra (?) [θ];
7-Twisted仿射李代数(?)[θ]的顶点算子实现
2.
Vertex Operator Representations of 3-twisted Affine Lie Algebra (?)[θ] and Modules for Vertex Algebra;
3-twisted仿射李代数(?)[θ]的顶点算子表示和顶点代数模
3.
Frankel and Kac[1,9,10]and Segal[11] had constructed the level-one representationsof a?ne Kac-Moody algebras A(n1),D_n~((1)),E_6~((1)),E7_~((1)),E8_~((1))by means of vertex operators in1981.
1981年,Frenkel,Kac[1,9,10]和Segal[11]用顶点算子构造出了仿Kac-Moody代数A_n~((1)),D_n~((1)),E_6((1)),E_7((1)),E_8((1))的第一类表示。
5) vertex-coloring of graph
图顶点着色
6) vertex-multiplication graph
顶点扩张图
1.
Literature review indicates that some researchers tended to classify the vertex-multiplication graphs corresponding to third-order connected astatic graphs into three categories,and made the hypothesis that the category-Ⅲ graph does not include the vertex-multiplication graph corresponding to the connected astatic graph with its diameter being at lest 3.
文献[1]将3阶以上的连通无向图的顶点扩张图按照其最小定向直径分为三类,并给出了如下猜想:直径至少为3的连通无向图的顶点扩张图不属于第三类图。
补充资料:图的减缩图(或称图子式)
图的减缩图(或称图子式)
minor of a graph
图的减缩图(或称图子式)【.皿以ofa脚户;MHHoPrpa中a」【补注】设G是一个图(graph)(可以有环及多重边).G的一个减缩图(nullor)是从G中接连进行下述运算而得的任何一个图: i)删去一条边; 五)收缩一条边; 说)去掉一个孤立顶点. NRobe由on与P.D.Se脚aour的图减缩定理(脚Ph nl的。r theon习11)如下所述:已知有限图的无穷序列G,,GZ,…,则存在指标i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条