2) Finite codimensional ideal
齐次多项项式芽
3) Homogeneous and symmetric polynomial
齐次对称多项式
1.
By means of majorized inequalities and mathematical induction, the well known Chebyshev s inequality is generalized to homogeneous and symmetric polynomials of degree m (e.
本文借助于控制不等式及数学归纳法 ,将著名的切比雪夫不等式推广到m次一般齐次对称多项式上 (如文中定理及引理 7) ,并将此结果用于对称平均等 。
4) homogeneous differential polynomial
齐次微分多项式
1.
,f (n) )dencte a homogeneous differential polynomial in f with the degree m>2,let a and b be two distinct finite small functions of f,if f m =a H(f,f ,.
,f(n))表示关于f的次数m>2,的齐次微分多项式,再设a和b是f的两个判别的有穷小函数,如果fm=aH(f,f',。
5) homogeneous polynomial maps
齐次多项式映射
1.
It is proved in this paper that there is only one equivalent class (under orthogonal transformations) of homogeneous polynomial maps of degree 3 between two spheres if the dilatation of the maps is three.
论文证明了二维球面之间的三次齐次多项式映射f,当伸缩度为 3时 ,在正交等价意义下f是唯一存在的 。
6) homogeneous polgnomial function
齐次多项式函数
补充资料:齐次多项式
简称“齐次式”。合并同类项后,各项次数都相同的多项式。如x-2y+3z是一次齐次式;3x2+y2-8z2+xy-2yz是二次齐次式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条