1) Nsvier boundary value problem
Navier边值问题
2) Navier problem
Navier问题
3) Navier Stokes problem
Navier-Stokes问题
1.
This paper presents an iteration method of solving non linear boundary integral equations (BIE) of the plane Navier Stokes problem,which each step of the iteration is to solve a linear BIE of nonhomogeneous Stokes problem.
采用简单迭代法解二维稳态 Navier-Stokes问题的非线性边界积分方程组 ,迭代的每一步皆归结于解非齐次 Stokes问题的边界积分方程组 ,故可用作者在 [1 ]中提供的高精度机械求积方法和外推法得到高精度解。
4) boundary value problem
边值问题
1.
Existence of solution of boundary value problems with p-Laplace operator;
具p-Laplace算子型边值问题解的存在性
2.
Existence of three positive solutions in boundary value problems of a class of second order ordinary differential systems;
一类二阶常微分方程组边值问题三个正解的存在性
3.
Solutions to m-point boundary value problems of higher order ODES at resonance;
具共振条件高阶微分方程多点边值问题的解(英文)
5) boundary-value problem
边值问题
1.
Existence of convex solutions for boundary-value problem of dynamic equations on time scales;
测度链上动力方程边值问题凸解的存在性
2.
Multiple solution of some boundary-value problems of n-order difference equation;
一类n阶差分方程边值问题的多解性
3.
Numerical solution of second order singular-perturbed boundary-value problems;
一类二阶奇异摄动边值问题的数值解法
6) boundary problem
边值问题
1.
Methods and particulars for solving boundary problem of electromagnetic field;
电磁场边值问题的解法及其特点
2.
By solving the one type boundary problems of partial equation, the computing formulae for stress fields of mode I, mode Ⅱ and mixed mode crack tips were derived.
通过求解一类线性偏微分方程的边值问题推出了Ⅰ型、Ⅱ型和混合型裂纹尖端附近的应力场的计算公式。
3.
This turns the second-class boundary problem into a first class one and, makes the solving process much easy.
计算轴对称场的涡流 ,用数值方法求解贝塞尔方程·利用相量法将分析静态场的有限差分法用于分析正弦稳态场 ;将求解电场强度的微分方程变为求解磁场强度的微分方程 ,使得第二类边值问题变为第一类边值问题·用磁场强度的旋度求得电场强度 ,再由电场强度求得电流密度·用来计算油井套管的涡流 ,计算结果与实验结果相符
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条