说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 修正KdV方程
1)  modified KdV equation
修正KdV方程
1.
This paper describes an exact limit procedure by which a simple formula for the N-doublepole solution to the modified KdV equation is derived from its 2N-soliton solution in the Hirota’s form.
该文给出一个严格的极限过程,从修正KdV方程的Hirota的2N-孤子解出发,得到N-双重极点解,并且给出后者的一个简洁表示。
2)  Modified B-KdV equation
修正B-KdV方程
3)  KdV equation
KdV方程
1.
New solitary wave-like solution and analytic solution of generalized KdV equation with variable coefficients;
变系数广义KdV方程新的类孤波解和解析解
2.
Exact and explicit solutions to KdV equation;
KdV方程的显式精确解
3.
The meromophic solutions of the complex KdV equation;
复化的KdV方程的亚纯解结构
4)  KdV-Burgers equation
KdV-Burgers方程
1.
The new solitary wave solutions to KdV-Burgers equation;
KdV-Burgers方程的新的孤波解
2.
Exact solutions to the KdV-Burgers equation and KdV-Burgers-Kuramoto equation;
KdV-Burgers方程和KdV-Burgers-Kuramoto方程的精确解
3.
The new solitrary wave solutions of the KdV-Burgers equation
KdV-Burgers方程的新孤波解
5)  damping KDV-KSV equation
KDV-KSV方程
1.
Inertial fractal set for damping KDV-KSV equation of chromatic dispersion;
具有色散的阻尼KDV-KSV方程的惯性分形集
6)  KdV type equation
KdV型方程
1.
WT5BZ]In this paper, with the aid of Mathematica, exact soliton solutions and two kinds of periodic wave solutions are obtained for the 2N+1 order KdV type equations by using three types of new ansatzes, and three kinds of explictic exact solutions are also found for the 2N+1 order KP equations.
借助于Mathematica软件 ,通过引入 3种新的假设 ,获得了 2N +1阶KdV型方程的孤子解和两种周期波解 ,并得到了 2N +1阶KP型方程的 3种显式精确解 。
2.
In this paper, the KDV type equation is considered on an unbounded domainR~1.
本文研究了无界区域R~1上的KDV型方程,运用带权空间构造一类紧算子和算子分解的方法,得到了该方程在无界区域R~1上拥有一个指数吸引子。
3.
In the second chapter, the KDV type equation on unbounded domain is considered.
在第二章中,运用带权空间构造一类紧算子和算子分解的方法,研究了无界区域上的KDV型方程,得到了该方程指数吸引子的存在性。
补充资料:Kdv方程
Image:11776596881617173.jpg
kdv方程

kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。

kdv方程的解为簇集的孤立子(又称孤子,孤波)。

kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。

kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条