1) KdV-mKdV equation
KdV-mKdV方程
1.
we apply this method to the KdV-mKdV equation, the double sine-Gordon equation and the BBM equation, and some new Jacobian elliptic function solutions of them are derived, The method can be applied to other nonlinear evolution equations in mathematical physics.
利用该方法研究了KdV-mKdV方程,双sine-Gordon方程和BBM方程,获得了这些方程的新Jacobi椭圆函数解。
2) KdV-MKdV-Burgers equation
KdV-MKdV-Burgers方程
3) KdV-mKdV equation
KdV-mKdV混合方程
1.
Solving the KdV-mKdV equation by the bilinear derivative method;
双线性导数方法求解KdV-mKdV混合方程
2.
The exact expression of multi-soliton solutions to the KdV-mKdV equation is obtained by Hirota method and the interaction process of multi-soliton is described by numerical figures.
应用Hirota方法得到KdV-mKdV混合方程多孤子解的解析表达式,通过图形展示多孤子相互作用,并且从理论上对孤子解的渐进分析证实孤子的特征。
4) combined Kdv-mKdV equation
组合KdV-mKdV方程
1.
New exact solitary wave solutions of the Burgers equation,combined KdV-mKdV equation and Fisher equation are constructed by replacing the tanh-function with the combinations of the exponential functions.
把双曲正切函数法中双曲正切函数替换成由指数函数组合而成的复合函数,并构造了Burgers方程和组合KdV-mKdV方程以及Fisher方程新的精确孤立波解。
5) Combined KdV mKdV equation
组合的KdV-mKdV方程
6) generalized KdV-mKdV equation
广义KdV-mKdV方程
1.
In order to keep long-time numerical behavior satisfactory,we consider the multi-symplectic formulations of the generalized KdV-mKdV equation with initial value condition in the Hamilton space.
基于Hamilton空间体系的多辛理论研究了广义KdV-mKdV方程。
2.
Using direct integration method generalized KDV-MKDV equation was converted the equation into a first-order nonlinear ordinary differential equation,then some new exact solutions were got using undetermined coefficient method,the exact solutiobns were also got using the method that,the assumption transformation was firstly done,then trial function was selected.
利用直接积分方法将广义KDV-MKDV方程化为一阶变系数非线性常微分方程组,然后用待定系数法确定相应的常数获得了广义KDV-MKDV方程新的精确解;利用先作假设变换后选取试探函数的方法来直接构造广义KDV-MKDV方程新的精确解。
补充资料:[styrene-(2-vinylpyridine)copolymer]
分子式:
分子量:
CAS号:
性质:学名苯乙烯-2-乙烯吡啶共聚物。微黄色粉末或透明小颗粒晶体。无臭,无味。不溶于水,溶于酸、乙醇、丙酮、氯仿。有抗水、防潮性能,适用于多种药片的包衣等。
分子量:
CAS号:
性质:学名苯乙烯-2-乙烯吡啶共聚物。微黄色粉末或透明小颗粒晶体。无臭,无味。不溶于水,溶于酸、乙醇、丙酮、氯仿。有抗水、防潮性能,适用于多种药片的包衣等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条